Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 11 2017 lúc 17:29

An Hoài Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 6 2021 lúc 7:16

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 22:40

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

Nguyễn Thành Đạt
Xem chi tiết
Yen Nhi
2 tháng 7 2021 lúc 21:51

\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) đồng biến khi: \(\left(x-1\right)\left(2x-3\right)>0\)

\(\Leftrightarrow x-1>0;2x-3>0\) hoặc \(x-1< 0;2x-3< 0\)

\(\Leftrightarrow x>1;x>\frac{3}{2}\) hoặc \(x< 1;x< \frac{3}{2}\)

\(\Leftrightarrow x>\frac{3}{2}\) hoặc \(x< 1\)

\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) nghịch biến khi: \(\left(x-1\right)\left(2x-3\right)< 0\)

\(\Leftrightarrow x-1>0;2x-3< 0\) hoặc \(x-1< 0;2x-3>0\)

\(\Leftrightarrow x>1;x< \frac{3}{2}\) hoặc \(x< 1;x>\frac{3}{2}\)

\(\Leftrightarrow1< x< \frac{3}{2}\)

Khách vãng lai đã xóa
Ngô Thành Chung
Xem chi tiết
Nguyễn Văn Nhật Hoàng
25 tháng 12 2020 lúc 21:13

TXĐ: \(x\ne\dfrac{5}{2}\)

\(y'=\dfrac{-11}{\left(2x-5\right)^2}< 0,\forall x\ne\dfrac{5}{2}\)

=> hàm số nghịch biến trên khoảng (-vô cực; 5/2) và (5/2;+ vô cực)

Nguyễn Văn Nhật Hoàng
25 tháng 12 2020 lúc 21:18

hoặc bạn có thể dùng cách 2 :

TXĐ x≠5/2

rồi bạn lập tỉ số \(A=\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}\)

+ nếu A>0 thì hs đb trên TXĐ

+ nếu A<0 thì hs nb trên TXĐ

P/s :ở đây theo mình nghĩ là A<0 nơi á :"))    

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2017 lúc 15:49

Đáp án D

Dựa vào hình vẽ, ta thấy rằng

+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3  

Và f '(x) đổi dấu từ - → +  khi đi qua x 1 , x 3 ⇒  Hàm số có 2 điểm cực tiểu, 1 điểm cực đại

+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1  đồng biến trên x 1 ; x 2  (1) sai

+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3  (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5  (chứa khoảng (3;5)) ⇒ 2 ; 3  đúng

Vậy mệnh đề 2,3 đúng và 1, 4 sai.

Ma Ron
Xem chi tiết
nthv_.
30 tháng 4 2023 lúc 10:51

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

Lê Thanh Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2023 lúc 23:25

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

Hoàng Lê
Xem chi tiết