Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\mx+y=m+1\end{matrix}\right.\)
tìm m ϵ Z để hệ phương trình sau có nghiệm nguyên
a) \(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m+1\right)x+\left(3m+1\right)y=2-m\\2x+\left(m+2\right)y=4\end{matrix}\right.\)
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
Cho hệ phương trình với tham số m\(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}2\left|x\right|-y=1\\mx+y=m+1\end{matrix}\right.\), m là tham số. Hệ có nghiệm duy nhất khi nào?
TH1: x>0
Hệ phương trình sẽ trở thành \(\left\{{}\begin{matrix}2x-y=1\\mx+y=m+1\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m}\ne-\dfrac{1}{1}=-1\)
=>\(m\ne-2\)
TH2: x<0
Hệ phương trình sẽ trở thành:
\(\left\{{}\begin{matrix}-2x-y=1\\mx+y=m+1\end{matrix}\right.\)
Hệ phương trình có nghiệm duy nhất khi \(-\dfrac{2}{m}\ne-\dfrac{1}{1}=-1\)
=>m<>2
Giúp mình các bài sau với:
Bài 1:Cho hệ phương trình\(\left\{{}\begin{matrix}x+y=1\\ax+2y=0\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số a để hệ vô nghiệm.
Bài 2:Cho hệ phương trình\(\left\{{}\begin{matrix}2x-y=m\\mx+\sqrt{2}y=m\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số m để hệ có vô số nghiệm.
Bài 3:Cho hệ phương trình\(\left\{{}\begin{matrix}\text{3x+(m^2+1)y=5m−10}\\−9x+(−3m^2−3)y=−15m+30\end{matrix}\right.\).Chứng minh rằng hệ có vô số nghiệm với mọi giá trị của tham số m.
Giúp mình các bài sau:
Bài 1:Cho hệ phương trình\(\left\{{}\begin{matrix}x+y=1\\ax+2y=0\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số a để hệ vô nghiệm.
Bài 2:Cho hệ phương trình\(\left\{{}\begin{matrix}2x-y=m\\mx+\sqrt{2}y=m\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số m để hệ có vô số nghiệm.
Bài 3:Cho hệ phương trình\(\left\{{}\begin{matrix}3x+\left(m^2+1\right)y=5m-10\\-9x+\left(-3m^2-3\right)y=-15m+30\end{matrix}\right.\).Chứng minh rằng hệ có vô số nghiệm với mọi giá trị của tham số m.
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)
=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)
\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)
\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)
=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)
=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)
=>m(5m+4)=18m-9
=>\(5m^2-14m+9=0\)
=>(m-1)(5m-9)=0
=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}mx+2my=-6\\\left(1-m\right)x+y=0\end{matrix}\right.\) với m=-1
Thay m=-1 vào hệ ta có:
\(\left\{{}\begin{matrix}-x+2.\left(-1\right)y=-6\\\left[1-\left(-1\right)\right]x+y=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x-2y=-6\\2x+y=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)
Giải và biện luận các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x-my=1+m^2\\mx+y=1+m^2\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\)
mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .
d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)
th1: \(m+2=0\Leftrightarrow m=-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có vô số nghiệm
th2: \(m+2\ne0\Leftrightarrow m\ne-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
vậy khi +) \(m=-2\) phương trình có vô số nghiệm
+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}mx-\left(m+1\right)y=3m\\x-2my=m+2\\x+2y=4\end{matrix}\right.\) . Biết hệ phương trình có nghiệm khi tham số \(m=m_0\) . Giá trị \(m_0\) là ?