Cho hệ phương trình :\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\) (m là tham số)
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y < 0
a,Tìm m để hệ phương trình \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)có nghiệm duy nhất (x;y) thỏa mã x+y= -3.
b, Tìm m để hệ phương trình \(\left\{{}\begin{matrix}mx-y=1\\x+my=m+6\end{matrix}\right.\)có nghiệm (x;y) thỏa mãn 3x -y =1.
c, Tìm các giá trị của m để hệ phương trình \(\left\{{}\begin{matrix}mx-2y=m\\-2x+y=m+1\end{matrix}\right.\)có nghiệm duy nhất (x;y) sao cho x-y=1
d, Tìm m để hệ phương trình \(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\)có nghiệm (x;y) thỏa mãn \(x^2-2y^2=1\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=m^2+3\\x-y=-4\end{matrix}\right.\)(m là tham số). CMR: Với mọi \(m\ne-1\), hệ phương trình có nghiệm duy nhất (x;y). Khi đó tìm giá trị nhỏ nhất của biểu thức: \(Q=x^2-2y+10\)
1.Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}2x-3y=3\\-4y=3x-13\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=3\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=3\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{x+1}-3\sqrt{y-1}=-4\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\)
2.Cho hệ phương trình:\(\left\{{}\begin{matrix}mx-y=2\\4x-my=m+6\end{matrix}\right.\)
a)giải hệ với m=-1
b) Tìm m để hệ phương trình có nghiệm duy nhất
c) tìm m để hệ phương trình có vô số nghiệm
d) tìm m để hệ phương trình vô nghiệm
giúp mk vs ạ!! mk đang cần gấp ạ!! Tks
Tìm m để hệ phương trình sau có nghiệm duy nhất:
\(\left\{{}\begin{matrix}mx^2+\left|x\right|-y=1-m\\x^2+y^2=1\end{matrix}\right.\)
Tìm m để hệ phương trình có một nghiệm duy nhất
\(\left\{{}\begin{matrix}mx^2+\left|x\right|-y=1-m\\x^2+y^2=1\end{matrix}\right.\)
giải hệ phương trình sau
\(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=x.y\\\left(x+8\right)\left(y-2\right)=x.y\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\left(I\right)\) (m là tham số) .
a) Giải hệ phương trình (I) khi m=1.
b) Tìm m để hệ (I) có nghiệm duy nhất (x,y) thỏa mãn x+y=-3.
giải hệ phương trình : \(\left\{{}\begin{matrix}x^2+y^2=2x\\\left(x-1\right)^3+y^3=1\end{matrix}\right.\)