Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 2 2018 lúc 10:02

Đáp án là B

 

Trì Ngâm
Xem chi tiết
santa
21 tháng 8 2021 lúc 21:21

chứng minh 1/21 + 1/22 + 1/23 + 1/24 +...........+ 1/80 không phải số tự nhiên giải được cho 5 sao và câu trả lời hay nhất - câu hỏi 1862868

bạn tham khảo lời giải nha

Tuấn Kiệt Mai
Xem chi tiết
๖ۣۜHả๖ۣۜI
16 tháng 12 2021 lúc 16:33

A

ngAsnh
16 tháng 12 2021 lúc 16:34

A

Ha Thai
Xem chi tiết
Quế Phan Hà An
Xem chi tiết
Quế Phan Hà An
1 tháng 5 2021 lúc 18:20

Giúp mình câu này đi, mình cần gấp lắm, ai đúng mình k cho.

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 1 2019 lúc 8:06

1/5+(1/20+1/21+1/22+1/23+1/24+1/25)+(1/101+1/102+103+104+105) Ta thấy 1/21;1/22;1/23;1/24;1/25 đều nhỏ hơn 1/20 nên 1/21+1/22+1/23+1/24+1/25<5×1/20<1/4 Tương tự 1/101+1/102+1/103+1/104+1/105<5×1/100<1/20 1/5+1/20+1/20=6/20=3/10 1/5+(<1/4)+(<1/20)<1/2 1/2=5/10 3/10<5/10 vậy suy ra điều cần chứng minh

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 8 2019 lúc 14:04

1/5+(1/20+1/21+1/22+1/23+1/24+1/25)+(1/101+1/102+103+104+105)
Ta thấy 1/21;1/22;1/23;1/24;1/25 đều nhỏ hơn 1/20 nên
1/21+1/22+1/23+1/24+1/25<5×1/20<1/4
Tương tự
1/101+1/102+1/103+1/104+1/105<5×1/100<1/20
1/5+1/20+1/20=6/20=3/10

1/5+(<1/4)+(<1/20)<1/2
1/2=5/10
3/10<5/10 vậy suy ra điều cần chứng minh

Lê thị Dung
Xem chi tiết
Tạ Giang Thùy Loan
6 tháng 4 2017 lúc 8:07

Số số hạng của biểu thức A là: (40-21):1+1=20(số hạng)

Ta có : 1/21>1/40,1/22>1/40,1/23>1/40,...,1/40=1/40

      1/21+1/22+1/23+...+1/40>1/40+1/40+1/41+1/40+...+1/40( 20 số 1/40)

      A>1/40x20=1/2

      A>1/20  (1)

Lại có: 1/21=1/21,1/21>1/22,1/21>1/23,...,1/21>1/40

      1/21+1/21+1/21+...+1/21(20 số 1/21)>1/21+1/22+1/23+...+1/40

      1/21x20>A

      20/21>A.Mà 1>20/21

    1>A   (2)

Từ (1) và (2) ta có : 1/2<A<1(đpcm)

Vậy bài tôán đđcm

Nguyễn Tiến Dũng
6 tháng 4 2017 lúc 8:07

\(\frac{1}{2}=\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\)có 20 số hạng      \(\)

\(\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}\)có 20 số hạng

\(\frac{1}{21}>\frac{1}{40}\)

\(\frac{1}{22}>\frac{1}{40}\)

\(.....\)

\(\frac{1}{40}=\frac{1}{40}\)\(\Rightarrow\frac{1}{2}< \frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}\)

\(1=\frac{1}{40}+....+\frac{1}{40}\)có 40 số hạng mà A chỉ có 20 số hạng 

\(\Rightarrow\frac{1}{2}< A< 1\)

Midori takemine
Xem chi tiết
Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 13:56

\(P=\left(1+2\right)+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{2020}\right)⋮3\)

Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 14:00

\(P=\left(1+2\right)+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\\ P=\left(1+2\right)\left(1+2^2+...+2^{2020}\right)=3\left(1+2^2+...+2^{2020}\right)⋮3\)