Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dia fic
Xem chi tiết
ghdoes
Xem chi tiết
nguyen thi vang
9 tháng 1 2021 lúc 19:34

\(A=x-2y+3z\left(x,y,z>0\right)\)

\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)

(1) <=> \(5x+5y=10\) <=> x+ y = 2

=> y = 2-x

Từ (1) => \(2x+4\left(2-x\right)+3z=8\) 

=> -2x +3z =0

=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A

=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)

Vậy Amin = -4.

 

hello lala
Xem chi tiết
Vũ Tiến Manh
20 tháng 10 2019 lúc 15:55

điều kiện ban đầu <=> (x-1)2+(y-2)2+(z-3)2 \(\le1\)

áp dụng bdt sau (ax+ by+ cz)2\(\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)(bunhiacopxky với 3 số)

[ x-1 + 2(y-2) + 2(z-3)]2 \(\le\left(1^2+2^2+2^2\right)\left[\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2\right]\le9.1=9\)

=>\(-3\le\) x-1 +2(y-2) +2(z-3) \(\le3\) <=> 8\(\le x+2y+2z\le14\)

Khách vãng lai đã xóa
camcon
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 12 2021 lúc 0:02

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{1}{2}\left(x+y+x+z\right)=\dfrac{1}{2}\left(2x+y+z\right)\)

Tương tự: \(\sqrt{2y+xz}\le\dfrac{1}{2}\left(x+2y+z\right)\) ; \(\sqrt{2z+xy}\le\dfrac{1}{2}\left(x+y+2z\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(4x+4y+4z\right)=4\)

\(P_{max}=4\) khi \(x=y=z=\dfrac{2}{3}\)

Xyz OLM
31 tháng 12 2021 lúc 0:02

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)

\(=\sqrt{3.\left(4+xy+yz+zx\right)}\)

Đã biết x2 + y2 + z2 \(\ge\)xy + yz + zx

=> xy + yz + zx \(\le\dfrac{\left(x+y+z\right)^2}{3}\)

Khi đó \(P\le\sqrt{3\left(4+xy+yz+zx\right)}\le\sqrt{3\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}\)

= 4 

Dấu "=" xảy ra <=> x = 2/3 

camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:17

\(\sqrt{2x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{x+2y+z}{2}\\ \Leftrightarrow P=\sum\sqrt{2x+yz}\le\dfrac{x+2y+z+2x+y+z+x+y+2z}{2}=\dfrac{4\left(x+y+z\right)}{2}=2\cdot2=4\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Xyz OLM
30 tháng 12 2021 lúc 23:20

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(Bunyacovski)

\(=\sqrt{3\left[4+\left(xy+yz+zx\right)\right]}\)

\(\le\sqrt{3.\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3.\left(4+\dfrac{4}{3}\right)}\) = 4

Dấu "=" xảy ra <=> x = y = z = 2/3 

dinh huong
Xem chi tiết
Vũ Đình Đức
Xem chi tiết
dia fic
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 10:51

\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)

 

Quốc Khánh Lê Duy
Xem chi tiết