a. 101/103; 11/13; 2009/2011; 69/71 xếp theo thứ tự từ lớn đến bé (giải thích)
b. 9/13; 2006/2009; 53/57; 117/120 xếp theo thứ tự từ bé đến lớn (giải thích)
Bài 3:
a) (7/103-9/101+2023)-(7/103+9/101+2023)
\(=\dfrac{7}{103}-\dfrac{9}{101}+2023-\dfrac{7}{103}-\dfrac{9}{101}-2023=-\dfrac{18}{101}\)
Cho A = 101 / 102 + 102 / 103 + 103 / 104
B = 101 + 102 + 103 / 102 + 103 + 104
Hãy so sánh A và B
Ta có: \(B=\frac{101+102+103}{102+103+104}=\frac{101}{102+103+104}+\frac{102}{102+103+104}+\frac{103}{102+103+104}\)
Ta thấy: \(\frac{101}{102}>\frac{101}{102+103+104}\)
\(\frac{102}{103}>\frac{102}{102+103+104}\)
\(\frac{103}{104}>\frac{103}{102+103+104}\)
\(\Rightarrow A=\frac{101}{102}+\frac{102}{103}+\frac{103}{104}>\frac{101}{102+103+104}+\frac{102}{102+103+104}+\frac{103}{102+103+104}=\frac{101+102+103}{102+103+104}=B\)
Vậy....
Cho A = 101 / 102 + 102 / 103 + 103 / 104
B = 101 + 102 + 103 / 102 + 103 + 104
Hãy so sánh A và B
\(B=\frac{101+102+103}{102+103+104}=\frac{101}{102+103+104}+\frac{102}{102+103+104}+\frac{103}{102+103+104}\)
Ta có: \(\frac{101}{102}>\frac{101}{102+103+104}\)
\(\frac{102}{103}>\frac{102}{102+103+104}\)
\(\frac{103}{104}>\frac{103}{102+103+104}\)
\(\Rightarrow A=\frac{101}{102}+\frac{102}{103}+\frac{103}{104}>\frac{101}{102+103+104}+\frac{102}{102+103+104}+\frac{103}{102+103+104}=\frac{101+102+103}{102+103+104}=B\)Vậy....
Ta có :\(\frac{101}{102}>\frac{101}{102+103+104}\)
\(\frac{102}{103}>\frac{102}{102+103+104}\)
\(\frac{103}{104}>\frac{103}{102+103+104}\)
Do đó:\(\frac{101}{102}+\frac{102}{103}+\frac{103}{104}>\frac{101+102+103}{102+103+104}\)
Vậy A>B
so sanh :A =(101102+1)/(101103+1) voi B = (101103 +1 )/ (101104+1)
ai lam duoc 3 tich
\(101A=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+101}{101^{103}+1}=\frac{101^{103}+1+100}{101^{103}+1}=\frac{101^{103}+1}{101^{103}+1}+\frac{100}{101^{103}+1}=1+\frac{100}{100^{103}+1}\)
\(101B=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=\frac{101^{104}+1}{101^{104}+1}+\frac{100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
vì 100103+1<100104+1
=>\(\frac{100}{100^{103}+1}>\frac{100}{100^{104}+1}\)
=>\(1+\frac{100}{100^{103}+1}>1+\frac{100}{100^{104}+1}\)
=>A>B
Cho M = {99 ; 101 ; 103 ; a} ; N = {99 ; 97 ; 101 ; 103 ; 87 ; 77 }
Để M⊂N thì giá trị của a có thể là :
10
200
77
15
Cho M = {99 ; 101 ; 103 ; a} ; N = {99 ; 97 ; 101 ; 103 ; 87 ; 77 }
Để M⊂N thì giá trị của a có thể là :
10
200
77
15
Cho M = {99 ; 101 ; 103 ; a} ; N = {99 ; 97 ; 101 ; 103 ; 87 ; 77 }
Để M⊂N thì giá trị của a có thể là :
10
200
77
15
so sánh: M= \(\dfrac{101^{102}+1}{101^{103}+1}\) và N= \(\dfrac{101^{103+1}}{101^{104}+1}\)
A= \(\frac{101}{102}\)+ \(\frac{102}{103}\)+\(\frac{103}{104}\) và B =\(\frac{101+102+103}{102+103+104}\) .So sánh A và B
\(A=2,970871956;B=\frac{102}{103}\)
\(A>2>1>B\)
\(\Rightarrow A>B\)
Đúng 100%
Đúng 100%
Đúng 100%
Ta có: \(B=\frac{101+102+103}{102+103+104}=\frac{101}{102+103+101}+\frac{102}{102+103+104}+\)\(\frac{103}{102+103+104}\)
Vì: \(\frac{101}{102}>\frac{101}{102+103+104}\)
\(\frac{102}{103}>\frac{102}{102+103+104}\)
\(\frac{103}{104}>\frac{103}{102+103+104}\)
\(\Rightarrow A>B\)
Vậy A > B
A=100/99+101/100; B= 102/101+103/102
A=100/99+101/100=10000/9900+9999/9900=19999/9900.
B=102/101+103/102=1040/10302+10403/10302=11443/10302
Giải hộ mình với mai phải nộp euif
cho A= 1+2-3+4-5+6+...+100+101-102+103
B= 1+(-3)+5+(-7)+...+101+(-103)+105
so sánh A và B
A= [(1+101)x101:2]-(102-103)
A= 5151+1
A=5152
B= [1+(-3)]+[4+(-5)]+.......[101+(-103)]+105
B= (-2)+(-2)...........+(-2)+105
=> A>B
B=(-2)x26+105
B=(-56)+105
B= 49
. Cho \(M=\dfrac{101^{102}+1}{101^{103}+1}\) và N = \(\dfrac{101^{103}+1}{101^{104}+1}\) So sánh M và N.
Tham khảo:
https://hoc247.net/hoi-dap/toan-6/so-sanh-m-101-102-1-101-103-1-va-n-101-103-1-101-104-1--faq225210.html