Giải phương trình:
x/2017+ (x-1)/2017= (x-2)/2019 -1
Giải phương trình nghiệm nguyên
a) \(x^2+6x+17^{91}=2016^{2020}\)
b) \(x^2+2017^{2019}=2016\left(y-1\right)^2\)
c) \(x^2-2x=2017^{2017}\)
d) \(x^2+4x=2018^{10}\)
Lời giải:
a.
PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$
Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$
Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.
b.
$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.
Vậy pt vô nghiệm.
c.
$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm
d.
$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$
Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm.
Giải phương trình
2-x/2017+1=x-1/2018-x/2019
Mọi người giải giúp em với em cảm ơn
Giải phương trình nghiệm nguyên
a) \(x^2=2y^2-8y+3\)
b) \(x^2+y^2-4x+4y=1\)
c) \(x^2+6x+17^{91}=2016^{2020}\)
d) \(x^2+2017^{2019}=2016\left(y-1\right)^2\)
e) \(x^2-2x=2017^{2017}\)
a, TK:
(x lẻ do \(2y^2-8y+3=2\left(y^2-4y\right)+3=x^2\) lẻ)
\(b,\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+4y+4\right)=9\\ \Leftrightarrow\left(x-2\right)^2+\left(y+2\right)^2=9\)
Vậy pt vô nghiệm do 9 ko phải tổng 2 số chính phương
Giải phương trình : \(\dfrac{2-x}{2017}+1=\dfrac{x-1}{2018}-\dfrac{x}{2019}\)
\(\dfrac{2-x}{2017}+1=\dfrac{x-1}{2018}-1+1-\dfrac{x}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{x-2019}{2018}+\dfrac{2019-x}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}+\dfrac{2019-x}{2018}-\dfrac{2019-x}{2019}=0\)
\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)
\(\Leftrightarrow2019-x=0\) (do \(\dfrac{1}{2017}>\dfrac{1}{2019}\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}>0\))
\(\Rightarrow x=2019\)
giải phương trình 2x2-2017\(\sqrt{2019-x^2}\)-2019=0
Đặt t=\(\sqrt{2019-x^{ }2}\)>0, nên \(t^2\)=2019-\(x^2\) hay \(x^2\)=2019-\(t^2\).
từ đề bài ta có: 2019-\(t^2\)-\(t^2\)-2017t=0
hay 2\(t^2\)+2017t-2019=0, nên t=1 và t=-2019/2<0 loại
t=1, nên \(x^2\)=2018, nên x=2018 hoặc x=-2018 thỏa điều kiện 2019-\(x^2\)>=0
Giải phương trình: \(\frac{2-x_{ }}{2017}-1=\frac{1-x}{2018}-\frac{x}{2019}\)
\(\frac{2-x}{2017}-1=\frac{1-x}{2018}-\frac{x}{2019}\)
\(\Leftrightarrow\) \(\frac{2-x}{2017}+1=\frac{1-x}{2018}+1-\frac{x}{2019}+1\)
\(\Leftrightarrow\) \(\frac{2019-x}{2017}=\frac{2019-x}{2018}-\frac{2019-x}{2019}\)
\(\Leftrightarrow\) \(\frac{2019-x}{2017}-\frac{2019-x}{2018}+\frac{2019-x}{2019}=0\)
\(\Leftrightarrow\) \(\left(2019-x\right)\left(\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\right)=0\)
Mà \(\left(\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\right)\ne0\)
\(\Rightarrow\) \(2019-x=0\) \(\Leftrightarrow\) \(x=2019\)
\(\Rightarrow\) \(S=\left\{2019\right\}\)
\(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\) hãy giải phương trình
\(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\Leftrightarrow\left(\dfrac{2-x}{2017}+1\right)=\left(\dfrac{1-x}{2018}+1\right)+\left(1-\dfrac{x}{2019}\right)\)
\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{2019-x}{2018}+\dfrac{2019-x}{2019}\)\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)
Ta đã có: \(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}< 0\)
Vậy ta dễ dàng suy ra được \(S=\left\{2019\right\}\)
giải phương trình \(|x-2017|^{2018}+|x-2018|^{2019}=1.\)
x-1/2020 + x+2/2019 >_ x-3/2018 + x+4/2017
giải bất phương trình trên