Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị maianh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 22:44

a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)

\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)

b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)

\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)

c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)

\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)

 

Mina
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 21:22

\(a,=\dfrac{\left(x+1\right)\left(x+y\right)}{\left(x-y\right)\left(x+1\right)}=\dfrac{x+y}{x-y}\\ b,=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}=\dfrac{x-3}{3x}\\ c,=\dfrac{\left(y-x\right)\left(y+x\right)}{xy\left(x-y\right)}=\dfrac{-x-y}{xy}\)

Akai Haruma
26 tháng 11 2021 lúc 21:24

Lời giải:

a.

\(\frac{x^2+xy+x+y}{x^2-xy+x-y}=\frac{x(x+y)+(x+y)}{x(x+1)-y(x+1)}=\frac{(x+y)(x+1)}{(x+1)(x-y)}=\frac{x+y}{x-y}\)

b.

\(\frac{x^2-6x+9}{3x^2-9x}=\frac{(x-3)^2}{3x(x-3)}=\frac{x-3}{3x}\)

c.

\(\frac{y^2-x^2}{x^2y-xy^2}=\frac{(y-x)(y+x)}{-xy(y-x)}=\frac{x+y}{-xy}\)

Huỳnh Xương Hưng
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 13:37

\(a,=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\\ b,=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\\ c,=x\left(x+1\right)+a\left(x+1\right)=\left(x+a\right)\left(x+1\right)\\ d,Sửa:x^2y+xy^2-3x-3y=xy\left(x+y\right)-3\left(x+y\right)=\left(xy-3\right)\left(x+y\right)\\ e,=xy\left(x+1\right)-\left(x+1\right)=\left(xy-1\right)\left(x+1\right)\\ f,=x^2-4=\left(x-2\right)\left(x+2\right)\\ g,=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\\ h,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ i,=\left(x-4\right)^2-24y^2=\left(x-2\sqrt{6}y-4\right)\left(x+2\sqrt{6}y+4\right)\)

Tham Le
Xem chi tiết
Minh Hiếu
28 tháng 10 2021 lúc 17:03

a) \(4\left(2-x\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+\left(xy-2y\right)\)

\(=4\left(x-2\right)\left(x-2\right)+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8\right)+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8+x-2\right)\)

\(=\left(x-2\right)\left(5x-10\right)\)

\(=5\left(x-2\right)^2\)

ILoveMath
28 tháng 10 2021 lúc 17:04

a, \(=4\left(x-2\right)^2+y\left(x-2\right)=\left(x-2\right)\left(4x-8+y\right)\)

b, \(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-xy+y^2-y^2\right]=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)=x\left(x-y\right)\left(x^2-2xy+y^2-y\right)\)

c, \(=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\)

d, không phân tích được

Vương Cấp
28 tháng 10 2021 lúc 17:06

c, x2y - xy2 - 3x + 3y
= xy(x-y) - 3(x-y)
= (x-y)(x-3)

Hoàng Thị Hà Linh
Xem chi tiết
Rhider
26 tháng 1 2022 lúc 7:42

a) \(3x\left(5x^2-2x-1\right)\)

\(=3x.5x^2-3x.2x+3x.\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^3-2xy+3\right)\left(-xy\right)\)

\(=\left(-xy\right).\left(x^2+2xy-3\right)\)

\(=\left(-xy\right).x^2+\left(-xy\right).2xy+\left(-xy\right).\left(-3\right)\)

\(=x^3y-2x^2y^2+3xy\)

mấy câu sau vt lại đè

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 7 2019 lúc 8:09

Nguyễn Thị Hiền Nga
Xem chi tiết
Nguyễn Thị Hiền Nga
Xem chi tiết
Thành An
Xem chi tiết
Thành An
30 tháng 3 2022 lúc 21:05

chỉ cần thu gọn đa thức này thôi

Nè Na
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 22:56

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 0:36

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)