c/ |2x-10| + 2x-10= 0
a) 7x .(2x+10)=0
b)-9x:(2x-10)=0
c) (4-x) (x+3)=0
d) (x+2023) . (x - 2024)=0
a, 7\(x\).(2\(x\) + 10) = 0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\){-5; 0}
b, - 9\(x\) : (2\(x\) - 10) = 0
- 9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-2023; 2024}
Tìm x
c/ | 2x - 10 | + 2x -10 = 0
=>|2x-10|=-2x+10
=>2x-10<=0
=>x<=5
Tìm xEZ, biết
a) 7x .(2x+10)=0
b)-9x:(2x-10)=0
c) (4-x) (x+3)=0
d) (x+2023) . (x - 2024)=0
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\in\) {-2023; 2024}
3. Tìm x, biết: a) 2x + 8 ≤ 0 b) 4x-7 ≥ 2x -5 c) (2x-8)(15-3x)>0 d) (10-2x)(8+2x)≤0
a) 2x+8≤ 0
⇔2x≤-8
⇔x≤-4
b) 4x-7 ≥ 2x -5
⇔2x-12 ≥ 0
⇔2x≥12
⇔x≥6
c) (2x-8)(15-3x)>0
TH1: 2x-8>0 ⇒x>4
15-3x>0⇒x<5
TH2: 2x-8<0 ⇒x<4
15-3x<0⇒x>5 (vô lí)
vậy 4<x<5
Bài 3: Tìm x biết:
a. \(2x+10=0\)
b. \(-2x+5=0\)
c. \(4-x=0\)
d. \(2x+1=0\)
e. \(x^2+2=0\)
f. \(2x+x=0\)
a) (2x - 1)2 - (2x + 5)(2x + 1) = 10
b) 92 (x - 1) + 25 .(1 - x) = 0
c) x2 + 3x - 4 = 0
`#040911`
`a)`
`(2x - 1)^2 - (2x + 5)(2x + 1) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10`
`\Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10`
`\Leftrightarrow -16x - 4 = 10`
`\Leftrightarrow -16x = 10 + 4`
`\Leftrightarrow -16x = 14`
`\Leftrightarrow x = \dfrac{-7}{8}`
Vậy, `x= \dfrac{-7}{8}`
`b)`
`9^2(x - 1) + 25(1 - x) = 0`
`\Leftrightarrow 9^2(x - 1) - 25(x - 1) = 0`
`\Leftrightarrow (x - 1)(9^2 - 25) = 0`
`\Leftrightarrow`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)
`\Leftrightarrow`\(\left[{}\begin{matrix}x=1\\\left(9-5\right)\left(9+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\4\cdot14=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\\ \text{Vậy, x = 1}\)
`c)`
\(x^2+3x-4=0\)
`\Leftrightarrow x^2 + 4x - x - 4 = 0`
`\Leftrightarrow (x^2 - x) + (4x - 4) = 0`
`\Leftrightarrow x(x - 1) + 4(x - 1) = 0`
`\Leftrightarrow (x + 4)(x - 1) = 0`
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{ Vậy, }x\in\left(-4;1\right)\)
Trong các phương trình sau, phương trình nào vô nghiệm:
A. x\(^2\)- 2x + 2 = 0
B. x\(^2\)- 2x + 1 = 0
C. x\(^2\)- 2x = 0
D. 2x - 10 = 2x - 10
Trong các phương trình sau, phương trình nào vô nghiệm:
A. x2 - 2x + 2 = 0
Vì: x2 - 2x + 2 = x2 - 2.x.1 + 1 + 1 = (x - 1)2 + 1 > 0
Chúc bạn học tốt@@
A. x2 - 2x + 2 = 0
\(\Leftrightarrow\) (x - 1)2 + 1 = 0
Vì (x - 1)2 \(\ge\) 0 với mọi x nên (x - 1)2 + 1 \(\ge\) 1 > 0 với mọi x
\(\Rightarrow\) Phương trình vô nghiệm
Vậy S = \(\varnothing\)
B. x2 - 2x + 1 = 0
\(\Leftrightarrow\) (x - 1)2 = 0
\(\Leftrightarrow\) x - 1 = 0
\(\Leftrightarrow\) x = 1
Vậy S = {1}
C. x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) x = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x = 0 và x = 2
Vậy S = {0; 2}
D. 2x - 10 = 2x - 10
\(\Leftrightarrow\) 2x - 10 - 2x + 10 = 0
\(\Leftrightarrow\) 0x = 0
\(\Rightarrow\) Phương trình có vô số nghiệm
Vậy phương trình vô nghiệm là A. x2 - 2x + 2 = 0
Chúc bn học tốt!!
Tìm số tự nhiên x biết:
a) (10-2x).(3x-18)=0 b) 10 + 2x = 165: 216 c) 28 - 2.(x - 4)2=10 d) (15-x)3.(x2 + 16) = 0 e) 52x - 3 - 2.52 = 52 . 3
f) (8 - x3).(x2 + 16) = 0 j) (2x + 5) + (2x + 10) +(2x + 15) +...+(2x + 95) = 77520
Giải phương trình:
a) |2x+2| + 10 = 2x
b) |x - 6| = |3 - 2x|
c) | x^2 - 9| + |2x - 6| = 0
\(a,\left|2x+2\right|+10=2x\)
*TH1 : \(\left|2x+2\right|=2x+2\Leftrightarrow2x+2>0\Leftrightarrow x>-1\)
\(\Rightarrow2x+2+10=2x\)
\(\Leftrightarrow2x-2x=-10-2\)
\(\Leftrightarrow0x=-12\left(vô\cdot lý\right)\)
*TH2 :\(\left|2x+2\right|=-2x-2\Leftrightarrow-2x-2< 0\Leftrightarrow x>-1\)
\(\Rightarrow-2x-2+10=2x\)
\(\Leftrightarrow-2x-2x=-10+2\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=\dfrac{1}{2}\left(nhận\right)\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
\(b,\left|x-6\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=3-2x\\x-6=-3+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;3\right\}\)