A=[x-1]+(-2018)
a)A=/x+7/+/x^2-169/-/x-2018/
b)B=[2018/2+2018/3+2028/4+.....+2019/2018]:[1/2018+2/2017+3/2016+......+2018]
a,Tìm các cặp số nguyên x,y thỏa mãn:
5+x/7+x=5/7 và x+y=24
b,So sánh : A=2017^2017+1/2018^2018+1 và B+2018^2018+1/2019^2019+1
A = 2017/2018 x 7/8 + 2017/2018 x 3/8 - 2017/2018 x 1/4
Ta có : A =\(\frac{2017}{2018}\)x \(\frac{7}{8}\)+ \(\frac{2017}{2018}\)x \(\frac{3}{8}\)- \(\frac{2017}{2018}\)x \(\frac{1}{4}\)
= \(\frac{2017}{2018}\) x ( \(\frac{7}{8}+\frac{3}{8}-\frac{1}{4}\))
= \(\frac{2017}{2018}\)x 1
=\(\frac{2017}{2018}\)
Vậy A= : \(\frac{2017}{2018}\)
Bài giải
\(A=\frac{2017}{2018}\text{ x }\frac{7}{8}+\frac{2017}{2018}\text{ x }\frac{3}{8}-\frac{2017}{2018}\text{ x }\frac{1}{4}\)
\(A=\frac{2017}{2018}\text{ x }\frac{1}{4}\left(\frac{7}{2}+\frac{3}{2}-1\right)=\frac{2017}{2018}\text{ x }\frac{1}{4}\text{ x }4==\frac{2017}{2018}\text{ x }1=\frac{2017}{2018}\)
cho
x^2 +y^2=1
(x4:2) +(y4:b)=1:(a+b)
CMR (x2018 :a2018)+(y2018:b2018)=1
Ad C-S
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2\right)^2}{a}+\dfrac{\left(x^2\right)^2}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}=\dfrac{1}{a+b}\)
cho: x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=6 . tinh A=x^2018+y^2018+z^2018
Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6
(x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0
(x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0
Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0
x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0
x^2 -1=0,y^2-1=0 và z^2-1=0
x^2 = 1.y^2 =1 và z^2 =1
Do đó: x^2018 = y^2018 =z^2018 =1
Vậy A =x^2018 +y^2018 +z^2018 =3
8. Bpt 2x -1 >= 0 tương đương với bột nào?
A. 2x -1 + 1/x-3 >= 1/x -3
B. 2x -1 + 1/x-3 >=1/x-3
C. (2x-1).✓x -2018 >= ✓ x-2018
D. 2x -1/ ✓ x -2018 >= 1/✓ x -2018
tìm GTNN A=(/x-2016/+2018-1/)/(x-2016/+2018)
a.1/3 x 2019/2020
b. 2017 x 2018/2019 x 2019/2018
a) Cho các số nguyên dương x và y. Biết rằng x và y là hai số nguyên tố cùng nhau.
Chứng minh rằng: a/b = x.( 2017.x+y)/2018.x+y là phân số tối giản
b) Cho A= 2018100+201896+...+20184+1/ 2018102+2018100+...+20182+1
CMR: 4A< (0,1)6
a, (x+2018)(1/2+2/7)=(x+2018).(1/5+1/6)
b, 7(x-1)+2x(x-1)=0
a) \(\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}\right)=\left(x+2018\right)\left(\frac{1}{5}+\frac{1}{6}\right)\)
\(\Leftrightarrow\) \(\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}\right)-\left(x+2018\right)\left(\frac{1}{5}+\frac{1}{6}\right)\) = 0
\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}-\frac{1}{5}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+2018=0\)
\(\Leftrightarrow x=-2018\)
b) \(7\left(x-1\right)+2x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7+2x\right)=0\)
\(\Leftrightarrow\) x - 1 = 0 hoặc 7 + 2x = 0
1) x - 1 = 0 \(\Leftrightarrow\) x = 1
2) 7 + 2x = 0 \(\Leftrightarrow\) -3,5
Vậy: x = 1; -3,5
b) \(7\left(x-1\right)+2x\left(x-1\right)=0\)
=> \(\left(x-1\right).\left(7+2x\right)=0\)
=> \(\left\{{}\begin{matrix}x-1=0\\7+2x=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0+1\\2x=0-7=-7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\x=\left(-7\right):2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=1\\x=-\frac{7}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;-\frac{7}{2}\right\}.\)
Chúc bạn học tôt!