Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
saadaa
Xem chi tiết
alibaba nguyễn
3 tháng 9 2016 lúc 6:43

Ta có x2 + xy + y2 = xy2

<=> (x + y)= xy(xy + 1) 

Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2

Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0

Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1) 

saadaa
Xem chi tiết
Tuấn
5 tháng 9 2016 lúc 17:04

sao ra x=y đc nhỉ 
pt đã cho có dạng  \(4x^2+8xy+4y^2+1=4x^2y^2+4xy+1\Leftrightarrow4\left(x+y\right)^2-\left(2xy-1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy-1\right)\left(2x+2y-2xy+1\right)=-1\)
Đến đây lập bảng nhé => được x y

Nguyễn Thị Thùy Dương
5 tháng 9 2016 lúc 15:53

\(x^2+xy+y^2=x^2y^2.\)

+ x =0; y =0  là nghiệm

+ x y khác  0

\(\frac{x}{y}+\frac{y}{x}=xy-1\in Z\)

=> x =y 

=> 3x2 =x4 => x2 = 3 loại

Vậy x = y =0 là nghiệm duy nhất

Phạm Dương Ngọc Nhi
Xem chi tiết
Lê Anh Duy
30 tháng 3 2019 lúc 13:03

3.

Le Minh Hieu
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
Lê Hào 7A4
Xem chi tiết
Shinichi Kudo
16 tháng 6 2023 lúc 20:51

loading...  

Shinichi Kudo
16 tháng 6 2023 lúc 21:06

loading...  

Duong Thi Nhuong TH Hoa...
Xem chi tiết