A= 3^n+3+ 2^n+3+3^n+1+2^n+2 CMR A:6
1. CMR: ∀ n∈\(N^{\cdot}\)
a) \(A=5^n+2.3^{n-1}+1\text{⋮}8\)
b) \(B=3^{n+2}+4^{2n+1}\text{⋮}13\)
c) \(C=6^{2n}+3^{n+2}+3^n\text{⋮}11\)
d) \(D=1^n+2^n+5^n+8^n\text{⋮}8\)
2. \(CMR:\) \(1^{2002}+2^{2002}+...+2002^{2002}\text{⋮}11\)
3. a) cho a,b ∈Z, t/m:\(a^2+b^2\text{⋮}7\). \(CMR:a\text{⋮}7;b\text{⋮}7\)
b) \(CMR:\) Nếu \(a^2+b^2\text{⋮}21\) thì \(a^2+b^2\text{⋮}441\) (a,b ∈Z)
\(1,\)
\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)
Với \(n=k+1\)
\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)
Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)
Theo pp quy nạp ta được đpcm
\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)
Với \(n=k+1\)
\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)
Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)
Theo pp quy nạp ta được đpcm
\(1,\)
\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)
Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)
\(d,D=1^n+2^n+5^n+8^n\)
Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)
\(2,\)
Ta thấy:\(1+2+...+2002=\left(2002+1\right)\left(2002-1+1\right):2=2003\cdot2002:2⋮11\left(2002⋮11\right)\)
Do đó \(1^{2002}+2^{2002}+...+2002^{2002}⋮1+2+...+2002⋮11\)
CMR : Với n thuộc N sao
a) A=\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)
CMR : A chia hết cho 10
b) B=\(\left(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\right)\)
CMR : B chia hết cho 6
CMR
A chia hết cho 6
A=3^n+3 +3^n+1+2^n+1+2^n+1(n thuộc N*)
CMR A= 3^n+3 + 3^n+3 - 3^n+2 + 3^n+2 chia hết cho 6 ( n thuộc N*)
CMR B= 3^n+2 + 3^n - 2^n+2 - 2^ chia hết cho 10 ( n thuộc N*)
1)
n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
2)
Bạn làm tương tự nha!
a/CMR:\(\curlyvee n\in Z^+:3^{n +2}-2^{n+2}+3^n-2^n⋮10\)
b/CMR:\(\curlyvee n\in Z^+:3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left(3^n.10\right)-\left(2^n.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
\(=\left(3^n-2^{n-1}\right).10⋮10\)
Tương tự nhé
Cmr với mọi số nguyên dương thì :
a,3^n+2 - 3^n - 2^n chia hết cho 10
b,3^n+3 + 3^n+1 + 2^n+3 + 2^n+2 chia hết cho 6
a)Cho A= 1/2^2+1/3^2+...+1/n^2.CMR A<1
b)Cho B=1/2^2+1/4^2+1/6^2+...+1/(2n)^2.CMR B<1/2
c)Cho C=3/4+8/9+15/16+...+n^2-1/n^2.CMR C<n-2
1. CMR: 7n3+2009: 21 với mọi n thuộc Z
2. CMR: n là số nguyên lẻ thì B=n3+3n3n+2414 : 8
3. CMR:
A=n3 +11n11n+2016 : 6 với n thuộc Z
4. CMR: Với mọi n thuộc Z+
A=32+23n-2nn+6 : 7
1. CMR:
a) D = \(6+6^2+6^3+......+6^{99}+6^{100}\) chia hết cho 7
b) E = \(3^{n+3}+2^{n+3^{ }}+3^{n+1}+2^{n+2}\) chia hết cho 6
Ta có : Số số hạng của dãy số D chính là khoảng cách từ 1-->100 , mỗi số cách nhau 1 đơn vị .
=> Số số hạng của dãy số D là : \(\frac{100-1}{1}+1=100\) ( số hạng )
Vậy ta có số nhóm là : 100 : 2 = 50 ( nhóm )
\(D=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{99}+6^{100}\right)\)
\(D=\left(6+6^2\right)+6^2\left(6+6^2\right)+...+6^{98}\left(6+6^2\right)\)
\(D=1.42+6^2.42+...+6^{98}.42\)
\(D=\left(1+6^2+...+6^{98}\right).42\)
Vì : 42 = 6 . 7 . Mà : \(1+6^2+...+6^{98}\in N\) \(\Rightarrow D⋮7\)
Vậy : \(D⋮7\)
b, \(E=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(E=3^n.3^3+2^n.2^3+3^n.3+2^n.2^2\)
\(E=3^n.3^3+3^n.3+2^n.2^3+2^n.2^2\)
\(E=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(E=3^n.30+2^n.12\)
\(E=3^n.5.6+2^n.2.6\)
\(E=\left(3^n.5+2^n.2\right).6\)
Mà : \(3^n.5+2^n.2\in N\Rightarrow E⋮6\)
Vậy : \(E⋮6\)
a)D=6+62+63+...+699+6100
D=(6+62)+(63+64)+...+(699+6100)
D=42.1+62..42+...+698.42
D=42.(1+62+...+698)\(⋮\)7
\(\Rightarrow\)D\(⋮\)7
\(6D=6^2+6^3+...+6^{101}\)
\(\Rightarrow5D=6D-D=6^{101}-6=6\left(6^{100}-1\right)\)
Ta chứng minh được \(6^{100}-1\) chia hết cho 7
Cụ thể là 6 đồng dư với \(-1\left(mod7\right)\Rightarrow6^{100}\) đồng dư với \(\left(-1\right)^{100}=1\left(mod7\right)\)
\(\Rightarrow6^{100}-1\) chia hết cho 7
Vậy \(5D\) chia hết cho 7 mà \(UCLN\left(5;7\right)=1\) suy ra D chia hết 7