Cho x+y=-2. Tìm GTNN của S=2(x3+y3)-15xy+7
Cho x+y=-2. Tìm GTNN của S=2(x3+y3)-15xy+7
Cho x+y=2. Tìm GTNN Q=x3+y3+2xy
A=x3+y3+2xy=(x+y)(x2−xy+y2)+2xyA=x3+y3+2xy=(x+y)(x2−xy+y2)+2xy
Thay x+y=2x+y=2(giả thiết), suy ra:
A=2(x2−xy+y2)+2xy2(x2−xy+y2)+2xy=2(x2+y2)=2(x2+y2)
Sử dụng điều kiện x+y=2x+y=2như vậy: (x+y)2=4⇔x2+2xy+y2=4(x+y)2=4⇔x2+2xy+y2=4(1)(1)
Mà (x−y)2≥0⇔x2−2xy+y2≥0(x−y)2≥0⇔x2−2xy+y2≥0(2)(2)
Cộng (1) và (2), ta có: 2(x2+y2)≥42(x2+y2)≥4
Vậy Amin = 4 ⇔x2+y2=2⇔x=y=1
Cho x-y=1. Tìm GTNN của P=x3-y3-x.y
\(x-y=1\Leftrightarrow x=1+y\\ P=\left(x-y\right)\left(x^2+xy+y^2\right)-xy\\ P=x^2+xy+y^2-xy\\ P=x^2+y^2=y^2+2y+1+y^2\\ P=2\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow y=-\dfrac{1}{2}\Leftrightarrow x=1-\dfrac{1}{2}=\dfrac{1}{2}\)
x3 - y3 - xy
= (x - y)(x2 + xy + y2) - xy
Thay x - y = 1 vào, ta đc:
= x2 + xy + y2 - xy
= x2 + y2
Ta có: x2 + y2 có giá trị nhỏ nhất khi \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Cho x+y =1. Tìm GTNN của biểu thức sau : x3+y3+xy
Lời giải:
Theo hằng đẳng thức đáng nhớ thì:
$x^3+y^3+xy=(x+y)(x^2-xy+y^2)+xy=x^2-xy+y^2+xy$
$=x^2+y^2=\frac{1}{2}[(x+y)^2+(x-y)^2]\geq \frac{1}{2}(x+y)^2=\frac{1}{2}$
Vậy GTNN của biểu thức là $\frac{1}{2}$. Giá trị này đạt tại $x+y=1$ và $x-y=0$
$\Leftrightarrow x=y=\frac{1}{2}$
Bài 2 : Cho x , y thuộc R thỏa mãn : x + y = -2
Tìm GTNN của A = 2 . ( x3 + y3 ) -15xy +7
Cho các số thực dương x, y, z thỏa mãn x3 + y3 + z3 = 24. Tìm GTNN của biểu thức
\(M=\dfrac{xyz+2\left(x+y+z\right)^2}{xy+yz+zx}-\dfrac{8}{xy+yz+zx+1}\)
Bài 1 : Cho x , y thuộc R . Tìm GTLN
P = 2 - 5x2 - y2 - 4xy + 2x
Bài 2 : Cho x , y thuộc R thỏa mãn : x + y = -2
Tìm GTNN của A = 2 . ( x3 + y3 ) -15xy +7
Bài 1:
\(P=2-5x^2-y^2-4xy+2x=3-\left(1-2x+x^2\right)-\left(4x^2+4xy+y^2\right)=3-\left(1-x\right)^2-\left(2x+y\right)^2\)
\(\Rightarrow GTLN=3\Leftrightarrow\hept{\begin{cases}1-x=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Bài 1 : Cho x , y thuộc R . Tìm GTLN
P = 2 - 5x2 - y2 - 4xy + 2x
Bài 2 : Cho x , y thuộc R thỏa mãn : x + y = -2
Tìm GTNN của A = 2 . ( x3 + y3 ) -15xy +7
cho x,y>0 thỏa mãn \(2\sqrt{xy}+\sqrt{\dfrac{x}{3}}=1\).Tìm GTNN của P=\(\dfrac{y}{x}+\dfrac{4x}{3y}+15xy\)
\(P=\dfrac{y}{x}+\dfrac{x}{y}+\left(\dfrac{x}{3y}+3xy+\dfrac{1}{3}+\dfrac{1}{3}\right)+12\left(xy+\dfrac{1}{9}\right)-2\)
\(P\ge2\sqrt{\dfrac{xy}{xy}}+4\sqrt[4]{\dfrac{3x^2y}{27y}}+12.2\sqrt{\dfrac{xy}{9}}-2\)
\(P\ge4\sqrt{\dfrac{x}{3}}+8\sqrt{xy}=4\left(2\sqrt{xy}+\sqrt{\dfrac{x}{3}}\right)=4\)
\(P_{min}=4\) khi \(x=y=\dfrac{1}{3}\)