Tìm GTNN của C=\(\left(x-1\right)\left(x-2\right)\left(x^2-4x+5\right)\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
Tính GTNN của \(B=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(B=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+4x\right)^2-25\ge-25\)
\(\Rightarrow A_{min}=-25\)
tìm GTLN,GTNN của:
\(\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
Tìm GTNN của các hàm số sau:
a) \(f\left(x\right)=5+x+\dfrac{1}{x}\left(x>4\right)\)
b) \(g\left(x\right)=\left(x+2\right)\left(3+\dfrac{1}{x}\right)\left(x>0\right)\)
c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2}{x+1}+2\right)^2\left(x\ne-1\right)\)
c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).
Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).
b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).
Đẳng thức xảy ra khi x = \(\sqrt{6}\).
Câu a muốn có min thì đề bài phải là \(x\ge4\) (có dấu "=")
Còn \(x>4\) thì chắc là đề sai
Tìm GTNN của \(C=\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
C=(x−1)(x−3)(x2−4x+5)
C=(x2-4x+3)(x2−4x+5)
đặt x2-4x+3=t
⇒x2−4x+5= t+2 pttt:
C= t(t+2)
=t2+2t
=t2+2t +1-1
=(t+1)2-1 ≥-1 (do (t+1)2≥0)
vậy gtnn c=-1 khi t=-1 ⇔ x2-4x+3=-1 ⇔x=2
\(C=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
\(C=\left(x^2-4x+3\right)^2+2\left(x^2-4x+3\right)+1-1\)
\(C=\left(x^2-4x+3+1\right)^2-1\)
\(C=\left(x-2\right)^4-1\ge-1\)
\(\Rightarrow C_{min}=-1\) khi \(x=2\)
tìm GTLN,GTNN của: A = \(\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
Tìm GTNN của biểu thức M
M = \(\left(x-1\right)^4+\left(3-x\right)^4+6\left(x^2-4x+3\right)^2+2013\)
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Tìm GTNN:
\(A=5\cdot\left|1-4x\right|-1\)
\(B=\left|x\right|+\left|x\right|\)
\(C=x^2+2\cdot\left|y-2\right|-1\)
A=5.|1-4x|-1
Do|1-4x|\(\ge0\Rightarrow5.\left|1-4x\right|\ge0\Rightarrow5.\left|1-4x\right|-1\ge\)-1
=>MinA=-1
Dấu "=" xảy ra khi |1-4x|=0 <=> 1-4x=0 <=> x=\(\frac{1}{4}\)
b, B=|x|+|x|
Do|x|\(\ge0\Rightarrow\left|x\right|+\left|x\right|\ge0\)
=>Min B=0 \(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
c, C=x2+2.|y-2|-1
Do x2\(\ge0;2.\left|y-2\right|\ge0\Rightarrow x^2+2\left|y-2\right|\ge0\)
=>C\(\ge-1\)=> Min C=-1
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-2\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)
BN TỰ KẾT LUẬN NHA
TK MK NHÉ