Chứng minh rằng:
A= \(\dfrac{x^2-2x+1}{x^2-9}\ge0\)
Cho biểu thức A = \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\):\(\dfrac{\sqrt{x}-1}{2}\) (\(x\ge0\); \(x\ne1\)). Chứng minh rằng \(A>0\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
cho biểu thức \(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\),(với \(x\ge0,x\ne4\))chứng minh A>1
Ta có: \(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x-3-2x+8-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
Ta có: \(A-1=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-1\)
\(=\dfrac{\sqrt{x}+2-\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}+1}>0\forall x\) thỏa mãn ĐKXĐ
hay A>1
\(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\\ =\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{3\left(x-1\right)-2\left(x-4\right)-9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}+1}=1+\dfrac{1}{\sqrt{x}+1}>1\)
Bài1
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\) và B=\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}vớix\ge0;x\ne9\)
1)Tính giá trị biểu thức A khi x=16
2)Chứng minh A+B=\(\dfrac{3}{\sqrt{x+3}}\)
1) Thay x=16 vào biểu thức ta có:
\(A=\dfrac{\sqrt{x}}{\sqrt{x+3}}=\dfrac{\sqrt{16}}{\sqrt{16}+3}=\dfrac{4}{4+3}=\dfrac{4}{7}\)
2) \(A+B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\\ \Rightarrow A+B=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A+B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A+B=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A+B=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A+B=\dfrac{3}{\sqrt{x}+3}\)
1: Thay x=16 vào A, ta được:
\(A=\dfrac{4}{4+3}=\dfrac{4}{7}\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
cho x,y là 2 số thực dương. chứng minh rằng: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-\dfrac{3x}{y}-\dfrac{3y}{x}+4\ge0\)
cho \(x,y,z\ge0\) chứng minh rằng:
\(\dfrac{x+y}{\left(x-y\right)^2}+\dfrac{z+y}{\left(y-z\right)^2}+\dfrac{x+z}{\left(x-z\right)^2}\ge\dfrac{9}{x+y+z}\)
a chứng minh rằng: \(\dfrac{x+3+2.\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\dfrac{\sqrt{x^2-9}}{x-3}\)
b rút gọn biểu thức T = \(\dfrac{x^2+5x+6+x.\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\)
Cho biểu thức:
\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
Với \(x\ge0;x\ne1\)
a,Rút gọn biểu thức trên
b,Chứng minh rằng P > 0 với mọi\(x\ge0;x\ne1\)
a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)
Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)
hay \(P>0\forall x>0,x\ne1\)(đpcm)
Cho biểu thức \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}};x\ge0,y\ge0,x\ne y\)
Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào x, y
Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=1