chứng minh rằng :
a) \(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)=\dfrac{x+1}{2x}\)
b)\(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x+1}{x}=\dfrac{2x}{x-1}\)
c)\(\left[\dfrac{2}{\left(x+1\right)^3}\left(\dfrac{1}{x}+1\right)+\dfrac{1}{x^2+2x+1}\left(\dfrac{1}{x^2}+1\right)\right]:\dfrac{x-1}{x^3}=\dfrac{x}{x-1}\)
chứng minh rằng: \(\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}=\dfrac{1}{x-y}\)
Cho biểu thức A = ( \(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\) ) . \(\dfrac{4x^2-4}{5}\)
a, Tìm điều kiện xác định của x để biểu thức A xác định
b, Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào biến x
Cho biểu thức: \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}\right):\left(\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}\right)\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) Chứng minh rằng với điều kiện đó, giá trị cảu biểu thức không phụ thuộc vào biến x.
Chứng minh biểu thức sau ko phụ thuộc vào biểu với tập xác định của nó
A=(\(\dfrac{x+y}{2x-2y}\) - \(\dfrac{x-y}{2x+xy}\) - \(\dfrac{2y^2}{y^2-x^2}\)) : \(\dfrac{2y}{x-y}\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
Chứng minh rằng :\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Rút gọn M và A sau đây :
M= \(\left(\dfrac{x}{x+3}+\dfrac{3-x}{x+3}.\dfrac{x^2+3x+9}{x^2-9}\right)\)
A= \(\left(\dfrac{3x}{1-3x}-\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
cho biết \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{ab}\)và x2+y2=1. chứng minh rằng:
a, bx2=ay2
b, \(\dfrac{x^{2012}}{a^{1006}}+\dfrac{y^{2012}}{b^{1006}}=\dfrac{2}{\left(a+b\right)^{1006}}\)
Chứng minh rằng với mọi x thuộc z thì:
\(A=\dfrac{x^3-x^2-8x+12}{x^2+4-4x}\) là số nguyên