Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hồng Ngọc
Xem chi tiết
Bùi Phước Huy
2 tháng 11 2015 lúc 20:18

Dễ,2a+b=6 =>b=6-2a

ab=a(6-2a)=6a-2a^2=9/2 -2(9/4 -3a+a^2)=9/2 -2(3/2 - a)^2 =>Min ab=9/2 khi a=3/2,b=3

Vũ Đình Thái
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 13:38

\(2a\ge ab+4\ge2\sqrt{4ab}=4\sqrt{ab}\Rightarrow\sqrt{\dfrac{a}{b}}\ge2\Rightarrow\dfrac{a}{b}\ge4\)

\(T=\dfrac{a}{b}+\dfrac{2b}{a}=\dfrac{a}{8b}+\dfrac{2b}{a}+\dfrac{7}{8}.\dfrac{a}{b}\ge2\sqrt{\dfrac{2ab}{8ab}}+\dfrac{7}{8}.4=\dfrac{9}{2}\)

\(T_{min}=\dfrac{9}{2}\) khi \(\left(a;b\right)=\left(4;1\right)\)

Chipu Ngốc
Xem chi tiết
Gia Bảo Vũ
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2021 lúc 15:27

\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)

\(P=2\left(\dfrac{a}{b}\right)+\left(\dfrac{b}{a}\right)-2=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{7}{4}\left(\dfrac{a}{b}\right)-2\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{7}{4}.2-2=\dfrac{5}{2}\)

\(P_{min}=\dfrac{5}{2}\) khi \(a=2b\)

Quỳnh Anh
Xem chi tiết
Akai Haruma
4 tháng 2 2021 lúc 3:09

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(T=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\geq \frac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}{2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)

\(\geq \frac{1}{2}.3\sqrt[3]{\frac{1}{abc}}=\frac{3}{2}\) (theo BĐT AM-GM)

Vậy $T_{\min}=\frac{3}{2}$.

Giá trị này đạt tại $a=b=c=1$

Hỏi Làm Gì
Xem chi tiết
alibaba nguyễn
12 tháng 11 2016 lúc 16:17

a/ Nếu (a + b) < 0 thì bất  đẳng thức đúng

Với (a + b) \(\ge0\)thì ta có

\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)

\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)

\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)

Hoàng Lê Bảo Ngọc
12 tháng 11 2016 lúc 17:30

b/ Áp dụng BĐT BCS : 

\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)

Áp dụng câu a/ :

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)

\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)

\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)

\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)

Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9

giang đào phương
Xem chi tiết
Nguyễn Minh Quang
9 tháng 8 2021 lúc 9:19

ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)

Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)

Vậy \(2007\le ab+2009\le2011\)

Khách vãng lai đã xóa
oooloo
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Phía sau một cô gái
1 tháng 8 2021 lúc 21:15

Áp dụng bất đẳng thức Cô - si ta có:

\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)

\(S\) \(=\)  \(ab+\dfrac{1}{ab}\ge2\sqrt{1}=2\)

Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}ab=\dfrac{1}{ab}\\a+b=1\end{matrix}\right.\)  ⇔  \(\left\{{}\begin{matrix}\left(ab\right)^2=1\\a+b=1\end{matrix}\right.\)

                                ⇔ \(a=b=0,5\)

GTNN của \(S=ab+\dfrac{1}{ab}=2\) khi \(a=b=0,5\)

 

 

anbe
1 tháng 8 2021 lúc 21:38

S=\(ab+\dfrac{1}{ab}\) 

Ta có :

Áp dụng BĐT Cauchy(cô-sy),ta có

1\(\ge a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\sqrt{ab}\le\dfrac{1}{2}\)\(\Rightarrow ab\le\dfrac{1}{4}\)

Đặt x=ab(x\(\le\dfrac{1}{4}\))

\(\Rightarrow x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\)

Áp dụng BĐT Cauchy (Cô -si):

\(S\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{16x}=\dfrac{1}{2}+\dfrac{15}{16X}\ge\dfrac{1}{2}+\dfrac{16}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)

Vậy Min S=\(\dfrac{17}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=\dfrac{1}{16ab}\\ab=\dfrac{1}{4}\\\end{matrix}\right.\) \(\Leftrightarrow a=b=\dfrac{1}{2}\)