Cho tam giác ABC có M là trung điểm BC,D là trung điểm AB.Chứng minh S\(_{AMC}\) = 2S\(_{AMD}\)
Cho tam giác ABC , M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a) Chứng minh: tam giác AMD= tam giác DMC
b) Chứng minh: AB//CD
c)Giả sử góc AMC=120 độ, biết góc BAM=1 phần 3 góc ABM Tính góc MDC
a)Xét ΔAMB và ΔDMC có:
AM=MD(gt)
BM=MC(M là trung điểm của BC)
góc AMB=góc DMC
⇒ΔAMB = ΔDMC(c.g.c)
b)Vì ΔAMD= ΔDMC(cm câu a)
⇒góc BAM = góc CDM(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
⇒AB//CD(đpcm)
c)Vì góc BAM=1/3 góc ABM nên góc BAM=1/3.120*=40*
Mà góc BAM = góc CDM(cm câu b)
⇒góc CDM=40*
Vậy CDM=40*
❏Dấu'' * ''là độ nhé
\(\text{Phần a, theo mình phải là chứng minh(CM)}\Delta AMB=\Delta DMC\text{ chứ?}\)
\(\text{AMD là một đường thẳng mà đâu phải là tam giác đâu bạn}\)
\(a,CM:\Delta AMB=\Delta DMC\)
\(\text{Do M là trung điểm của BC}\Rightarrow MB=MC\)
\(\text{Xét }\Delta AMB=\Delta DMCcó:\)
\(MA=MB\left(gt\right)\left(1\right)\)
\(\widehat{AMB}=\widehat{DMC}\left(\text{đối đỉnh}\right)\left(2\right)\)
\(MB=MC\left(cmt\right)\left(3\right)\)
\(\text{Từ (1), (2) và (3)}\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\left(đpcm\right)\)
\(b,CM:\text{AB//CD}\)
\(\text{Do }\Delta AMB=\Delta DMC\left(\text{câu a}\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\left(\text{2 góc tương ứng}\right)\)
\(\text{Hay }\widehat{ABC}=\widehat{DCB}\left(4\right)\)
\(\text{Mà 2 góc này ở vị trí so le trong của 2 đường thẳng AB và CD}\left(5\right)\)
\(\text{Từ (4) và (5)}\Rightarrow\text{AB//CD}\left(\text{dấu hiệu nhận biết}\right)\left(đpcm\right)\)
\(c,\widehat{MDC}=?\)
\(\widehat{BAM}=\dfrac{1}{3}\widehat{ABM}\left(gt\right)\Rightarrow3.\widehat{BAM}=\widehat{ABM}\)
\(\text{Xét }\Delta AMB\text{ có }\widehat{AMC}\text{ là góc ngoài:}\)
\(\Rightarrow\widehat{ABM}+\widehat{BAM}=\widehat{AMC}\left(\text{tính chất góc ngoài}\right)\)
\(\text{Mà }\widehat{AMC}=120^o\left(gt\right),\text{Thay }\widehat{ABM}=3.\widehat{BAM}\)
\(\Rightarrow3.\widehat{BAM}+\widehat{BAM}=120^o\)
\(\Rightarrow4.\widehat{BAM}=120^o\)
\(\Rightarrow\widehat{BAM}=30^o\)
\(\text{Do }\Delta AMB=\Delta DMC\left(\text{câu a}\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\left(\text{2 góc tương ứng}\right)\left(6\right)\)
\(\text{Mà }\widehat{BAM}=30^o\left(cmt\right)\left(7\right)\)
\(\text{Từ (6) và (7)}\Rightarrow\widehat{MDC}=30^o\)
tam giác ABC vuông ở A, AC=8 cm,BC=10cm.M thuộc AB sao cho BM=4cm, lấy D sao cho A là trung điểm của CD.
Tính AB.
chứng minh M là trọng tâm của tam giác BCD.
Chứng minh E là trung điểm BC.. Chứng minh D,M,E thẳng hàng
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=10^2-8^2=36\)
hay AB=6(cm)
Vậy: AB=6cm
b) Ta có: BM=4cm(gt)
BA=6cm(cmt)
Do đó: \(\dfrac{BM}{BA}=\dfrac{2}{3}\)
Xét ΔBCD có
BA là đường trung tuyến ứng với cạnh CD(A là trung điểm của CD)
M\(\in\)BA(gt)
\(\dfrac{BM}{BA}=\dfrac{2}{3}\)(cmt)
Do đó: M là trọng tâm của ΔBCD(Định lí)
c) Ta có: M là trọng tâm của ΔBCD(cmt)
nên DM là đường trung tuyến ứng với cạnh BC
mà DE là đường trung tuyến ứng với cạnh BC(E là trung điểm của BC)
và DM, DE có điểm chung là D
nên D,M,E thẳng hàng(đpcm)
Cho tam ABC có AB<AC.Trên tia AB lấy điểm D sao cho AD=AC, M là trung điểm của CD
a.SS:tam giác AMD và tam giác AMC
b.AM cắt BC tại N, ss: NC và ND
cho tam giác ABC , M là trung điểm của BC . Trên tia AM lấy điểm D sao cho M là trung điểm của AD.
a)chứng minh tam giác AMC = tam giác DMB và BD // AC
b)trên tia AB lấy điểm E sao cho B là trung điểm của AE . chứng minh tam giác ABC = tam giác DCB và tam giác ABC = tam giác BED.
c)trên đường thẳng DE lấy điểm F sao cho D là tung điểm của
EF . chứng minh ba điểm A,C,F thẳng hàng và C là trung điểm của AF
a) Xét ΔAMC và ΔDMB có
AM=DM(M là trung điểm của AD)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)
mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
b) Xét ΔAMB và ΔDMC có
AM=DM(M là trung điểm của AD)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
⇒AB=CD(Hai cạnh tương ứng)
Ta có: ΔAMC=ΔDMB(cmt)
nên AC=BD(Hai cạnh tương ứng)
Xét ΔABC và ΔDCB có
AB=DC(cmt)
AC=DB(cmt)
BC chung
Do đó: ΔABC=ΔDCB(c-c-c)
Cho tam giác ABC,M là trung điểm BC, I là trung điểm AM,D là giao điểm của CI,AB.Chứng minh AD=\(\frac{1}{2}\)DB
cho tam giác ABC có AB= AC. tia phân giác của góc BAC cắt BC tại điểm M
a/ chứng minh tam giác AMB = tam giác AMC và M là trung điểm BC
b/ điểm E nằm giữa 2 điểm A và B . từ điểm E vẽ đường thẳng vuông góc AM cắt AC tại điểm K. chứng minh EK//BC
c/ chọn điểm S sao cho B là trung điểm SK. chọn điểm D sao cho C là trung điểm của ED. Gọi H là giao điểm của AC và SD chứng minh điểm C là trung điểm HK
Cho tam giác ABC có BC=2AB, M là trung điểm BC, D là trung điểm của BM. Trên tia đối của tia DA lấy điểm E sao cho DE=DA. Chứng minh AME = AMC
Theo mình có thể đề sai vì không cho một số đo một góc nào cả thì hơi khó
1.Cho tam giác ABC có AB<AC. Trên tia AB lấy điểm D sao cho AD = AC,M là trung điểm của CD. a. So sánh tam giác AMD và tam giác AMC. b.AM cắt BC tại N, so sánh NC và ND. . c. Từ B kẻ BH vuông góc với CD(H thuộc CD), chứng minh BH song song AM.
a: Xét ΔAMD và ΔAMC có
AM chung
MD=MC
AD=AC
Do đó: ΔAMD=ΔAMC
b: Xét ΔNDC có
NM là đường cao
NM là đường trung tuyến
Do đó:ΔNDC cân tại N
hay ND=NC
Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy D sao cho MD=MA. Biết AC>AB. CMR:a. Tam giác AMD= DMC.b. CD< AC.c. Góc CAM< góc BAM.d, Góc AMB< góc AMC.
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)