a)Xét ΔAMB và ΔDMC có:
AM=MD(gt)
BM=MC(M là trung điểm của BC)
góc AMB=góc DMC
⇒ΔAMB = ΔDMC(c.g.c)
b)Vì ΔAMD= ΔDMC(cm câu a)
⇒góc BAM = góc CDM(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
⇒AB//CD(đpcm)
c)Vì góc BAM=1/3 góc ABM nên góc BAM=1/3.120*=40*
Mà góc BAM = góc CDM(cm câu b)
⇒góc CDM=40*
Vậy CDM=40*
❏Dấu'' * ''là độ nhé
\(\text{Phần a, theo mình phải là chứng minh(CM)}\Delta AMB=\Delta DMC\text{ chứ?}\)
\(\text{AMD là một đường thẳng mà đâu phải là tam giác đâu bạn}\)
\(a,CM:\Delta AMB=\Delta DMC\)
\(\text{Do M là trung điểm của BC}\Rightarrow MB=MC\)
\(\text{Xét }\Delta AMB=\Delta DMCcó:\)
\(MA=MB\left(gt\right)\left(1\right)\)
\(\widehat{AMB}=\widehat{DMC}\left(\text{đối đỉnh}\right)\left(2\right)\)
\(MB=MC\left(cmt\right)\left(3\right)\)
\(\text{Từ (1), (2) và (3)}\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\left(đpcm\right)\)
\(b,CM:\text{AB//CD}\)
\(\text{Do }\Delta AMB=\Delta DMC\left(\text{câu a}\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\left(\text{2 góc tương ứng}\right)\)
\(\text{Hay }\widehat{ABC}=\widehat{DCB}\left(4\right)\)
\(\text{Mà 2 góc này ở vị trí so le trong của 2 đường thẳng AB và CD}\left(5\right)\)
\(\text{Từ (4) và (5)}\Rightarrow\text{AB//CD}\left(\text{dấu hiệu nhận biết}\right)\left(đpcm\right)\)
\(c,\widehat{MDC}=?\)
\(\widehat{BAM}=\dfrac{1}{3}\widehat{ABM}\left(gt\right)\Rightarrow3.\widehat{BAM}=\widehat{ABM}\)
\(\text{Xét }\Delta AMB\text{ có }\widehat{AMC}\text{ là góc ngoài:}\)
\(\Rightarrow\widehat{ABM}+\widehat{BAM}=\widehat{AMC}\left(\text{tính chất góc ngoài}\right)\)
\(\text{Mà }\widehat{AMC}=120^o\left(gt\right),\text{Thay }\widehat{ABM}=3.\widehat{BAM}\)
\(\Rightarrow3.\widehat{BAM}+\widehat{BAM}=120^o\)
\(\Rightarrow4.\widehat{BAM}=120^o\)
\(\Rightarrow\widehat{BAM}=30^o\)
\(\text{Do }\Delta AMB=\Delta DMC\left(\text{câu a}\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\left(\text{2 góc tương ứng}\right)\left(6\right)\)
\(\text{Mà }\widehat{BAM}=30^o\left(cmt\right)\left(7\right)\)
\(\text{Từ (6) và (7)}\Rightarrow\widehat{MDC}=30^o\)