Hãy rút gọn PT sau:
B=\(\dfrac{x^2-9}{x^2-6x+9}\)
cho pt
b=x^2-9/x^2-6x+9
a) tìm ĐKXĐ
b) tìm x để giá trị của pt =0
c)rút gọn pt
a) ĐKXĐ: \(x\ne3\)
b)
\(B=0\\ \Leftrightarrow\dfrac{x^2-9}{x^2-6x+9}=0\\ \Leftrightarrow x^2-9=0\\ \Leftrightarrow x^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(l\right)\\x=-3\left(n\right)\end{matrix}\right.\)
c)
\(B=\dfrac{x^2-9}{x^2-6x+9}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
Rút gọn M và A sau đây :
M= \(\left(\dfrac{x}{x+3}+\dfrac{3-x}{x+3}.\dfrac{x^2+3x+9}{x^2-9}\right)\)
A= \(\left(\dfrac{3x}{1-3x}-\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
Rút gọn các biểu thức sau ;
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
\(E=\dfrac{\left|x-3\right|}{\left(x-3\right)\left(x+3\right)}\left(x+3\right)^2=\dfrac{\left|x-3\right|\left(x+3\right)}{x-3}\left(x\ne\pm3\right)\)
Với \(x>3\Leftrightarrow E=x+3\)
Với \(x< 3\Leftrightarrow E=-x-3\)
\(F=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\left(x\ge0;x\ne25\right)\\ F=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
Rút gọn các biểu thức sau:
a. $A = (\sqrt{12}-2\sqrt5)\sqrt3 + \sqrt{60}$.
b. $B = \dfrac{\sqrt{4x}}{x-3}.\sqrt{\dfrac{x^2-6x+9}x}$ với $0<x<3$.
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
em thiếu, giờ mới nhìn lại \(2\sqrt{9}=2.3=6\)
2.4 Rút gọn biểu thức
\(a,\dfrac{3-\sqrt{x}}{x-9}\) ( vs x ≥ 0, x≠ 9)
b, \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}\)( vs x ≥ 0 ; x ≠ 9)
c, \(6-2x-\sqrt{9-6x+x^2}\left(x< 3\right)\)
a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x+3}}\)(\(x\ge0,x\ne9\))
b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\sqrt{x}-2\left(x\ge0,x\ne9\right)\)
a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x}+3}\)
b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)
c) \(6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-\left|3-x\right|\)
mà \(x< 3\Rightarrow3-x>0\Rightarrow6-2x-\left|3-x\right|=6-2x-3+x=3-x\)
a,\(\dfrac{3-\sqrt{x}}{x-9}\)
=\(-\dfrac{3-\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
=\(-\dfrac{1}{3+\sqrt{x}}\)
cho biểu thức \(A=\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\)
A, rút gọn A
B, tính A thoả mãn \(x^2-2x-3=0\)
C, tìm các giá trị x nguyên để A nhạn giá trị nguyên
\(A=\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\left(ĐKXĐ:x\ne\pm3\right)\)
a, \(A=\dfrac{-\left(x-3\right)\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)}+\dfrac{x}{x+3}\)
\(=-1+\dfrac{x}{x+3}=\dfrac{-x-3+x}{x+3}=\dfrac{-3}{x+3}\)
b, \(x^2-2x-3=0\Leftrightarrow x^2-3x+x-3\Leftrightarrow x\left(x-3\right)+\left(x-3\right)\Leftrightarrow\left(x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
TH1 : Nếu x = 3 thì gt của biểu thức \(A=\dfrac{-3}{3+3}=-\dfrac{3}{6}=-\dfrac{1}{2}\)
TH2 : Nếu x = -2 thì gt của biểu thức \(A=\dfrac{-3}{-2+3}=-3\)
c, Để A nhận giá trị nguyên thì \(x+3\inƯ\left(3\right)\) ( Ư(-3 ) cũng được như nhau nhé ! )
Xét bảng :
x + 3 | x |
1 | -2 |
-1 | -4 |
3 | 0 |
-3 | -6 |
Vậy để A nguyên thì \(x\in\left\{-6;-4;-2;0\right\}\)
cho A =( \(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}):\dfrac{x^2-6x^2+9}{\left(2-x\right)\left(x-3\right)}\)
Rút gọn A
cho phân thức\(\dfrac{x^2+6x+9}{x^2-9}\)
a,tìm điều kiện xác định của x để phân thức xác định
b,rút gọn phân thức
c,tính giá trị của A tại x=2
rút gọn rồi tính giá trị biểu thức
a,\(\dfrac{9x^2-6x+1}{9x^2+1}\) tại x =-3
b, \(\dfrac{x^2-6x+9}{-9x+3x^2}\) tại x=-\(\dfrac{1}{3}\)
c, \(\dfrac{x^2-4x+4}{2x^2-4x}\) tại x=-\(\dfrac{1}{2}\)
a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)
\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{3x-1}{3x+1}\)
\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)
b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)
\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)
\(=\dfrac{x-3}{3x}\)
\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)
c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)
\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)
\(=\dfrac{x-2}{2x}\)
\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)