Tính tổng
A =1+6+62+64+...+6100
B =1+32+34+36+38+...+3100
C =1+33+36+39+312+...+3120
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37+38+39+40+41+42+43+44+45+46+47+48+49+50+51+52+53+54+56+57+58+59+60+61+62+63+64+65+66+67+68+69+70=?
So sánh tổng S= 1/31+1/32+1/33+1/34+1/35+1/36+1/37+1/38+1/39+1/40 với 1/4
Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)
Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)
\(\dfrac{1}{32}>\dfrac{1}{40}\)
\(\dfrac{1}{33}>\dfrac{1}{40}\)
\(\dfrac{1}{34}>\dfrac{1}{40}\)
\(\dfrac{1}{35}>\dfrac{1}{40}\)
\(\dfrac{1}{36}>\dfrac{1}{40}\)
\(\dfrac{1}{37}>\dfrac{1}{40}\)
\(\dfrac{1}{38}>\dfrac{1}{40}\)
\(\dfrac{1}{39}>\dfrac{1}{40}\)
\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)
Vậy \(S>\dfrac{1}{4}\)
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39. Chứng tỏ rằng S chia hết cho 4.
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39.Chứng tỏ rằng S chia hết cho 13.
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39. Chứng tỏ rằng S chia hết cho 4.
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
Cho S = 1+3+32+33+34+35+36+37+38+39.Chứng tỏ rằng S chia hết cho 4
Giup mik vs
\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(S=4x\left(1+3^2+...+3^8\right)\)
Vì 4 chia hết cho 4 nên S chia hết cho 4
1. Tính một cách hợp lý
a) 387+(-224)+(-87)
b) (-75)+379+(-35)
c) 11+(-13)+15+(-17)
d) (-21)+24+(-27)+31
2. Tính một cách hợp lý:
a. (62-81)-(12-59+9)
b. 39+(13-26)-(62+39)
c. 32-34+36-38+40-42
d.92-(55-8)+(-45)
Bài 2:
a. $=62-81-12+59-9=(62-12)+(59-9)-81$
$=50+50-81=100-81=19$
b. $=39+13-26-62-39=(39-39)+13-(26+62)$
$=0+13-88=-(88-13)=-75$
c. $=(32-42)+(36-34)+(40-38)=10+2+2=14$
d. $=92-55+8-45=(92+8)-(55+45)=100-100=0$
Bài 1:
a. $=(387-87)-224=300-224=76$
b. $=-(75+35)+379=-110+379=379-110=269$
c. $=(11+15)-(13+17)=25-30=-5$
d. $=(31-21)-(27-24)=10-3=7$
a, 39+<13-26> - <62+39>
b, 32-34+36-38+40-42
c, 92-<55-8>+<-45>
d, Tính tổng phần tử của tập hợp M = <x e Z / -20 _< x <_ 20 >
a: =39-13-62-39=-75
b: =(-2)+(-2)+(-2)=-6
c: 92-55+8-45=100-100=0
d: M={-20;-19;-18;...;18;19;20}
Tổng là (-20)+(-19)+(-18)+...+18+19+20=0
Tính một cách hợp lí:
a) (62 - 81) – (12 – 59 + 9); b) 39 + (13 – 26) – (62 + 39).
c) 32 – 34 + 36 – 38 + 40 – 42; d) 92 – (55 – 8) + ( - 45).
e) Tính tổng các phần tử của tập hợp M = {x ∈ Z| - 20 ≤ x ≤ 20};