\(A=1+6+6^2+6^4+...+6^{100}\)
\(\Rightarrow6A=6+6^2+6^4+...+6^{100}+6^{101}\)
\(\Rightarrow6A-A=\left(6+6^2+6^4+....+6^{102}\right)-\left(1+6+6^2+6^4+...+6^{100}\right)\)
\(\Rightarrow5A=6^{101}-1\)
\(\Rightarrow A=\frac{6^{101}-1}{5}\)
\(B=1+3^2+3^4+3^6+3^8+...+3^{100}.\)
\(\Rightarrow3B=3^2+3^4+3^6+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^4+...+3^{101}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{101}-1}{2}\)