Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thị Mai Anh
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Monkey . D . Luffy
28 tháng 4 2023 lúc 9:19

loading...

 

꧁༺ml78871600༻꧂  
Lê Quang Nhật
Xem chi tiết
Phan Thị Thảo Vy
Xem chi tiết
Huỳnh Uyên Như
29 tháng 10 2015 lúc 11:59

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

Phan Thị Thảo Vy
29 tháng 10 2015 lúc 20:41

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

Big City Boy
Xem chi tiết
Trần Minh Hoàng
28 tháng 2 2021 lúc 15:57

BĐT cần chứng minh tương đương với:

\(\left(\dfrac{a}{b^2}-\dfrac{2}{b}+\dfrac{1}{a}\right)+\left(\dfrac{b}{a^2}-\dfrac{2}{a}+\dfrac{1}{b}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{16}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2\ge\dfrac{4\left(a-b\right)^2}{ab\left(a+b\right)}\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a-b\right)^2}{a^2b^2}\ge\dfrac{4\left(a-b\right)^2}{ab\left(a+b\right)}\).

\(\Leftrightarrow\left(a-b\right)^2\left[\dfrac{a+b}{a^2b^2}-\dfrac{4}{ab\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^4}{a^2b^2\left(a+b\right)}\ge0\) (luôn đúng).

 

Yeutoanhoc
28 tháng 2 2021 lúc 15:57

`a/b^2+b/a^2+16/(a+b)>=5(1/a+1/b)`

`<=>a/b^2-1/b+b^2-1/a+4(4/(a+b)-1/a-1/b)=0`

`<=>(a-b)/b^2+(b-a)/a^2+4((4ab-(a+b)^2)/(ab(a+b)))>=0`

`<=>(a^2(a-b)-b^2(a-b))/(a^2b^2)-(4(a-b)^2)/(ab(a+b))>=0`

`<=>(a-b)^2[(a+b)^2-4ab]>=0`

`<=>(a-b)^2(a^2-2ab+b^2)>=0`

`<=>(a-b)^2(a-b)^2>=0`

`<=>(a-b)^4>=0` luôn đúng.

Dấu "=" xảy ra khi `a=b`

Nguyễn Thu Hiền
Xem chi tiết
Nguyễn Bá Hào
Xem chi tiết
Hà Thanh Thảo
Xem chi tiết
Phạm Lan Hương
7 tháng 3 2021 lúc 12:31

c1:áp dụng bđt AM-GM:

\(a+b\ge2\sqrt{ab}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2=1008^2\)

=> đáp án A

c2: tương tự c1 . đáp án b

Nguyễn Việt Lâm
8 tháng 3 2021 lúc 5:49

3.

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)

Đáp án A

4.

\(a^2-a+1=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall a\)

Đáp án A

Đặng Thùy Linh
Xem chi tiết