Tìm số nguyên dương n để a = \(\dfrac{n-37}{n+43}\) là bình phương của một số hữu tỉ dương
có bao nhiêu chữ số nguyên dương n để n-37/n+43 là bình phương của một số hữu tỉ dương
tìm số nguyên dương n để \(\frac{n-23}{n=89}\) là bình phương 1 số hữu tỉ dương
Tìm số nguyên dương x để \(\frac{x-37}{x+43}\) là bình phương của một số hữu tỉ.
tìm số nguyên dương n sao cho \(\frac{n-23}{n+89}\)là bình phương 1 số hữu tỉ dương
Đặt: \(\frac{\left(n-23\right)}{n+89}=\frac{a^2}{b^2}\)(với a,b là 2 số nguyên dương và (a,b)=1)).
Gọi d=(n-23,n+89)\(\Rightarrow n+89-\left(n-23\right)=112⋮d\). Do đó d chỉ có thể có các ước nguyên tố là 2 và 7.
Nếu d chia hết cho 7 thì: Đặt n=7k+2 ( với k là số nguyên dương). Suy ra: \(\frac{\left(n-23\right)}{n+89}=\frac{7k-21}{7k+91}=\frac{k-3}{k+13}\).
Đến đây xét vài trường hợp nữa bài này có dạng tìm k biết \(k+a,k+b\) đều là số chính phương.
Cho số nguyên dương n thỏa mãn 2n+1 / 3n+1 là bình phương một số hữu tỉ. Chứng minh rằng n chia hết cho 40
Ta có :
\(10\le n\le99\)
\(\Rightarrow21\le2n+1\le201\)
\(\Rightarrow2n+1\) là số chính phương lẻ (1)
\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)
\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)
\(\Rightarrow dpcm\)
\(\Rightarrow n=40⋮40\Rightarrow dpcm\)
Tìm số nguyên n để: 3n+9/ n−4 là số hữu tỉ dương
Lời giải:
Để $\frac{3n+9}{n-4}$ là số hữu tỉ dương thì có 2 TH xảy ra:
TH1:
\(\left\{\begin{matrix} 3n+9>0\\ n-4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n>-3\\ n>4\end{matrix}\right.\Leftrightarrow n>4\)
TH2:
\(\left\{\begin{matrix} 3n+9< 0\\ n-4< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n< -3\\ n< 4\end{matrix}\right.\Leftrightarrow n< -3\)
Cho số hữu tỉ
x= \(\dfrac{a+5}{-12}\)
a, Khi a = -2 thì x là số hữu tỉ dương hay âm
b, Khi a= -9 thì x là số hữu tỉ dương hay âm
c , Tìm giác trị của a để x= 0
d, So sánh x với -1,8 khi a= -37
a) Khi a = -2 thì x = (-2 + 5)/(-12) = 3/(-12) = -1/4
Vậy x là số hữu tỉ âm
b) Khi a = -9 thì x = (-9 + 5)/(-12) = (-4)/(-12) = 1/3
Vậy x là số hữu tỉ dương
c) Để x = 0 thì a + 5 = 0
a = -5
d) Khi a = -37 thì
x = (-37 + 5)/(-12)
= (-32)/(-12)
= 8/3 > 0
Mà 0 > -1,8
Vậy x > -1,8 khi a = -37
tìm n là số nguyên dương để : \(n^4+n^3+n^2+n+1\) là bình phương của 1 số nguyên dương
Đặt \(n^4+n^3+n^2+n+1=a^2\)
\(\Rightarrow4\left(n^4+n^3+n^2+n+1\right)=\left(2a\right)^2\)
Mà ta có : \(\left[n\left(2n+1\right)\right]^2< \left(2a\right)^2< \left[n\left(2n+1\right)+2\right]^2\)
\(\Rightarrow4a^2=\left[n\left(2n+1\right)+1\right]^2\Rightarrow n=3\)thỏa mãn đề bài.