x^2 +y^2-z^2+2xy
______________
x^2-y^2+z^2+2xz
Rút gọn phân thức x^2+y^2+z^2-2xy+2xz-2yz/x^2-2xy+y^2-z^2
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(\dfrac{x^2-2xy+y^2+2z\left(x-y\right)+z^2}{\left(x-y\right)^2-z^2}=\dfrac{\left(x-y\right)^2+2z\left(x-y\right)+z^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}=\dfrac{x-y+z}{x-y-z}\)
CMR : (x-y-z)^2 = x^2 + y^2 +z^2 - 2xy +2yz-2xz
Ta có: \(\left(x-y-z\right)^2\)
= \(\left[\left(x-y\right)-z\right]^2\)
= \(\left(x-y\right)^2-2\left(x-y\right)z+z^2\)
= \(x^2-2xy+y^2-2xz+2yz+z^2\)
= \(x^2+y^2+z^2-2xy+2yz-2xz\left(đpcm\right)\)
chứn minh rằng
câu 1:(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
câu 2:(x-y-z)2=x2+y2+z2-2xy-2xz+2yz
so sánh
A=2009.2009
B=2008.2010
chứng minh(x-y-z)^2=x^2+y^2+z^2-2xy+2xz+2yz
Cho x;y;z khác 0 và x+y khác z và y+z khác x thỏa mãn:
\(\dfrac{x^2+y^2-z^2}{2xy}-\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}=1\)
Tính P = x + y + z
Đẳng thức đã cho tương đương với:
\(\dfrac{x^2z+y^2z-z^3+y^2x+z^2x-x^3+z^2y+x^2y-y^3}{2yxz}=1\)
\(\Leftrightarrow x^3+y^3+z^3+2xyz-x^2y-y^2z-z^2x-xy^2-yz^2-zx^2=0\)
\(\Leftrightarrow\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)=0\Leftrightarrow z+x=y\) (Do x + y khác z và y + z khác x).
Từ đó P = 2y (Biểu thức của P phụ thuộc vào biến y).
Vậy từ giả thiết đó bạn có thể CMR P=0 đc k
Giúp mk ba mk đg cần gấp
rut gon : \(\frac{x^2+y^2+z^2-2xy+2xz-2y^2}{x^2-2xy+y^2-z^2}\)
Trả lời:
sửa đề: \(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\frac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}=\frac{x-y+z}{x-y-z}\)
thu gon phan thuc sau (x^3+y^3+z^3-3xyz )/(x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2)
thu gon phan thuc sau (x^3-y^3+z^3-3xyz )/(x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2)