\(=\dfrac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+z-y\right)\left(x+y+z\right)}=\dfrac{x+y-z}{x-y+z}\)
\(=\dfrac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+z-y\right)\left(x+y+z\right)}=\dfrac{x+y-z}{x-y+z}\)
Rút gọn phân thức x^2+y^2+z^2-2xy+2xz-2yz/x^2-2xy+y^2-z^2
cho x, y , z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
1) Rút gọn phân thức :
\(\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)
2) Chứng minh :
\(\dfrac{x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}=\dfrac{1}{x-y}\)
3) Sử dụng các hằng đẳng thức để biến đổi và rút gọn phân thức sau :
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
1.Rút gọn phân thức:
\(\dfrac{\text{x^7+ x^6 + x^5+ x^4+ x^3 + x^2+ x +1 }}{x^2-1}\)
2. SD hằng đẳng thức để biến đổi và rút gọn phân thức sau:
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
Rút gọn phân thức:
1.\(\dfrac{\left(x-y\right)^{3^{ }}-3xy\left(x+y\right)+y^3}{x-6y}\)
2. \(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
3.\(\dfrac{\left(n+1\right)!}{n!\left(n+2\right)}\)
4. \(\dfrac{n!}{\left(n+1\right)!-n!}\)
5. \(\dfrac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}\)
Rút gọn các phân thức sau:
1. \(\dfrac{\left(x^2+2\right)^2-4x^2}{y\left(x^2+2\right)-2xy-\left(x-1\right)^2-1}\)
2. \(\dfrac{x^2+5x+6}{x^2+3x+2}\)
3. \(\dfrac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2zt+2xz-t^2}\)
4. \(\dfrac{\left(n+1\right)!}{\left(n+1\right)!+\left(n+2\right)!}\)
5. \(\dfrac{x^2+5x+4}{x^2-1}\)
6. \(\dfrac{x^2-3x}{2x^2-7x+3}\)
1. Cho biết x , y , z # 0 và \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\) .
Chứng minh rằng : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
2. Rút gọn : \(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) , biết rằng : x + y + z = 0
3. Cho 3x - y = 3z và 2x + y = 7z . Tính giá trị cua biểu thức :
M = \(\dfrac{x^2-2xy}{x^2+y^2}\) ( x # 0 ; y # 0 )
Rút gọn phân thức:
1, \(\dfrac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
2, \(\dfrac{x^4-y^4}{x^3+y^3}\)
3, \(\dfrac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\)
4, \(\dfrac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
5, \(\dfrac{x^3-7x+6}{x^2\left(x-3\right)^2+4x\left(3-x\right)^2+4\left(x-3\right)^2}\)
Cho x + y + z + 0 và x, y, z \(\ne\) 0. Rút gọn :
a/ \(P=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
b/ \(Q=\dfrac{\left(x^2+y^2-z^2\right)\cdot\left(y^2+z^2-x^2\right)\cdot\left(z^2+x^2-y^2\right)}{16\cdot x\cdot y\cdot z}\)