Ta có: \(\left(x-y-z\right)^2\)
= \(\left[\left(x-y\right)-z\right]^2\)
= \(\left(x-y\right)^2-2\left(x-y\right)z+z^2\)
= \(x^2-2xy+y^2-2xz+2yz+z^2\)
= \(x^2+y^2+z^2-2xy+2yz-2xz\left(đpcm\right)\)
Ta có: \(\left(x-y-z\right)^2\)
= \(\left[\left(x-y\right)-z\right]^2\)
= \(\left(x-y\right)^2-2\left(x-y\right)z+z^2\)
= \(x^2-2xy+y^2-2xz+2yz+z^2\)
= \(x^2+y^2+z^2-2xy+2yz-2xz\left(đpcm\right)\)
cho x,y,z dương và x+y+z=1 CMR:1/x^2+2yz + 1/y^2 +2xz + 1/z^2+2xy > hoặc = 9
Tìm x, y, x : \(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
Tìm x,y,z thỏa mãn đẳng thức sau :
(x-z)2 + (y-z)2 +y2 +z2 = 2xy -2yz + 6z - 9
Cmr
a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
c) \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
d) \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
1. Cho (x+y+2) (2x+2y+xy) = 2xy
CMR: (x+y+z)2015=x2015+y2015+22015
BT1; (x + a) (x + b) (x + c)
biết rằng a+b+c = -6
ab+bc+ca = -7
abc =-60
BT2; chứng minh rằng
(x+y+z )2 = x2+y2+z2 +2xy +2yz+2zx
BT3 ; rút gọn biểu thức
(3n+1 - 2 .2 n) (3 n+1 +2 .2n) - 3 2n+x + (8.2 n-2) 2
Cho P=(x+y)2 + (y+z)2 + (z+x)2
Q=(x+y)(y+z) + (y+z)(z+x) + (z+x)(x+y)
CMR nếu P=Q thì x=y=z
Bài 1: Tìm x:
a. x(x-2)+x-2=0
b. x(x-3)+x-3=0
Bài 2: Làm tính chia:
a.\((x^3+3x^2-11x+2):(x-2)\)
b. \((y^3+3y^2-11y+2):(y-2)\)
Bài 3: Tìm GTNN:
a. A= \(2x^2+y^2+z^2-4x-6y-2xz-2004\)
b. B= \(2x^2+y^2+z^2-4x-6y-2xz+2030\)