Tìm điểm cố định mà đường thẳng y=(m-2)x+3 luôn đi qua với mọi giá trị của m
Cho đường thẳng y+(m+1).x+m(d)
a, Tìm giá trị của m để đường thẳng (d) đi qua điểm A(1;2)
b, Tìm giá trị của m để đường thẳng (d) song song với đườgn thẳng y=2x+3
c, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
Cho đường thẳng y+(m+1).x+m(d)
a, Tìm giá trị của m để đường thẳng (d) đi qua điểm A(1;2)
b, Tìm giá trị của m để đường thẳng (d) song song với đườgn thẳng y=2x+3
c, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay m=1/2
Cho đường thẳng y+(m+1).x+m(d)
a, Tìm giá trị của m để đường thẳng (d) đi qua điểm A(1;2)
b, Tìm giá trị của m để đường thẳng (d) song song với đườgn thẳng y=2x+3
c, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
b: Để hai đường song song thì m+1=2
hay m=1
Cho đường thẳng y+(m+1).x+m(d)
a, Tìm giá trị của m để đường thẳng (d) đi qua điểm A(1;2)
b, Tìm giá trị của m để đường thẳng (d) song song với đườgn thẳng y=2x+3
c, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
a:
Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)
Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:
\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)
=>-3=-3(đúng)
vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua
b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)
\(=2mx+x+m-2\)
\(=m\left(2x+1\right)+x-2\)
Điểm mà (d) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)
Tìm điểm cố định mà mỗi đường thẳng sau luôn đi qua với mọi giá trị của m:
a) y = (m - 2)x + 3
b) y = (m - 1)x + (2m - 1)
c) y = mx + (m + 2)
Tìm điểm cố định mà mỗi đường thẳng sau luôn đi qua mới mọi giá trị của tham số m.
a) y = (m - 1)x+ 3
b) y = (m + 2)x - (m - 1)
c) y = (m + 1)x + 2m - 1
a, Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đths luôn đi qua
\(\Leftrightarrow y_0=\left(m-1\right)x_0+3\\ \Leftrightarrow y_0=mx_0-x_0+3\\ \Leftrightarrow mx_0+3-x_0-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=3\end{matrix}\right.\\ \Leftrightarrow A\left(0;3\right)\)
Vậy đths luôn đi qua điểm \(A\left(0;3\right)\)
\(b,\) Gọi \(B\left(x_0;y_0\right)\) là điểm cố định mà đths luôn đi qua
\(\Leftrightarrow y_0=\left(m+2\right)x_0-\left(m-1\right)\\ \Leftrightarrow mx_0+2x_0-m+1-y_0=0\\ \Leftrightarrow m\left(x_0-1\right)+\left(2x_0-y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0-1=0\\2x_0-y_0+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=1\\y_0=3\end{matrix}\right.\\ \Leftrightarrow B\left(1;3\right)\)
Vậy đths luôn đi qua điểm \(B\left(1;3\right)\)
Câu c bạn làm tương tự câu b
tìm điểm cố định mà đường thẳng y=(m+2).x+(m-3).y-m+8 luôn đi qua với mọi m
Lời giải:
$y=(m+1)x+(m-3)y-m+8, \forall m\in\mathbb{R}$
$\Leftrightarrow y=m(x-3y-1)+(x-3y+8), \forall m\in\mathbb{R}$
$\Leftrightarrow m(x-3y-1)+(x-4y+8)=0, \forall m\in\mathbb{R}$
\(\Leftrightarrow \left\{\begin{matrix} x-3y-1=0\\ x-4y+8=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=28\\ y=9\end{matrix}\right.\)
Vậy đt luôn đi qua điểm cố định $(28,9)$
(P): y=\(\dfrac{x^2}{2}\) (d): y=mx+m+5
a)Chứng minh đường thẳng (d) luôn đi qua một điểm cố định với mọi giá trị m và tìm tọa độ điểm cố định đó.
b)Đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt
Tìm điểm cố định mà đường thẳng y = (2m + 3)x - m + 1 luôn đi qua với mọi m
Giả sử điểm cố định mà đường thẳng đi qua là \(M\left(x_0;y_0\right)\Rightarrow\) với mọi m ta có:
\(y_0=\left(2m+3\right)x_0-m+1\)
\(\Leftrightarrow m\left(2x_0-1\right)+3x_0-y_0+1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_0-1=0\\3x_0-y_0+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{2}\\y_0=\dfrac{5}{2}\end{matrix}\right.\)
Vậy điểm cố định mà đường thẳng đi qua là \(M\left(\dfrac{1}{2};\dfrac{5}{2}\right)\)