Tìm giá trị nhỏ nhất của hàm số f(x)=\(\dfrac{x}{2}+\dfrac{2}{x-1}\) , ∀x>1
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
\(y=sin\dfrac{2x}{x^2+1}+cos\dfrac{x}{x^2+1}+1\)
Tìm giá trị nhỏ nhất của hàm số
a, y = f(x) = \(\dfrac{4}{x}+\dfrac{x}{1-x}\) trên (0; 1)
b,, y = f(x) = \(\dfrac{1}{x}+\dfrac{1}{1-x}\) trên (0; 1)
a.
\(y=\dfrac{4}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)
\(y_{min}=8\) khi \(x=\dfrac{4}{5}\)
b.
\(y=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)
\(y_{min}=4\) khi \(x=\dfrac{1}{2}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
tìm giá trị nhỏ nhất m của hàm số f(x) = \(\dfrac{\left(x+2\right)\left(x+8\right)}{x}\) với x>0
\(f\left(x\right)=\dfrac{x^2+10x+16}{x}=x+\dfrac{16}{x}+10\ge2\sqrt{\dfrac{16x}{x}}+10=14\)
\(f\left(x\right)_{min}=14\) khi \(x=4\)
tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số trên đoạn [2;4]
y=\(\dfrac{x^2+3}{x-1}\)
Cho hàm số \(f\left(x\right)=\dfrac{x-m^2}{x+8}\)với m là tham số cực . Tìm giá trị lớn nhất của m để hàm số có giá trị nhỏ nhất trên đoạn \(\left[0;3\right]=2\)
f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].
Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.
Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.
a) Tìm tất cả các tham số m nguyên để \(F\left(x\right)=\dfrac{7}{x^2+\dfrac{1}{2}m}\) có nghiệm x nguyên và F(x) là số nguyên dương.
b) Với mọi \(m\ge0\), tìm giá trị lớn nhất của F(x).
Với mọi m < 0, tìm giá trị nhỏ nhất của F(x).
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Tìm giá trị nhỏ nhất của hàm số: $y=2x^{2} +\dfrac{5}{x+1}$, $x\ge 2$.
Ta có: \(y-\frac{29}{3}=2x^2+\frac{5}{x+1}-\frac{29}{3}\)
\(=\frac{6x^2\left(x+1\right)+15-29\left(x+1\right)}{3\left(x+1\right)}\)
\(=\frac{6x^3+6x^2+15-29x-29}{3\left(x+1\right)}\)
\(=\frac{6x^3+6x^2-29x-14}{3\left(x+1\right)}\)
\(=\frac{\left(6x^3-12x^2\right)+\left(18x^2-36x\right)+\left(7x-14\right)}{3\left(x+1\right)}\)
\(=\frac{\left(x-2\right)\left(6x^2+18x+7\right)}{3\left(x+1\right)}\ge0\left(\forall x\right)\) vì \(x+1\ge3>0\)
\(\Rightarrow y\ge\frac{29}{3}\)
Dấu "=" xảy ra khi: \(x=2\)
Vậy \(min_y=\frac{29}{3}\Leftrightarrow x=2\)
Câu 1: Cho hàm số y = 2x\(^2\)
a) Hãy lập bảng tính các giá trị f(-5), f(-3), f(0), f(3), f(5)
b) Tìm x biết f(x) = 8, f(x) = 6 - 4\(\sqrt{2}\)
Câu 2: Cho hàm số y = f(x) = \(\dfrac{1}{3}x^2\)
Tìm các giá trị của x, biết rằng \(y=\dfrac{1}{27}\). Cũng câu hỏi tương tự với y = 5
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)