cho so tu nhien n \(\ge\) 1.chung minh rang :
\(2^n.n!\le\left(n+1\right)^n\le\left(2n\right)^n\)
CMR:
\(2^n.n!\le\left(n+1\right)^n\le\left(2n\right)^n\)
Với: \(n\ge1;n!=1.2.3.4.....n\)
chung minh rang tong vua n so tu nhien le lien tiep (ke tu 1)la mot so chinh phuong
chung minh rang da thuc n^4-16 chia het cho 16 voi moi n la so tu nhien le
Với n chẵn thì mới đúng,mà chắc là sai đề chứ n chẵn thì đề bài quá hiển nhiên(lớp 6 thừa sức giải)
.
tính
D=\(\left(-1\right)^n\left(-1\right)^{2n+1}\left(-1\right)^{n+1}\) (n la so tu nhien)
D=(-1)^n.(-1)^2n+1.(-1)^n+1
=(-1)n+2n+1+n+1
=(-1)(n+2n+n)+(1+1)
=(-1)4n+2=(-1)4n.(-1)2
=[(-1)4]n.1=1n.1=1
vậy D=1
chung minh n^4 -1 chia het cho 8 voi n la so tu nhien le
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!!
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{n+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
Cho đa thức \(P\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) với \(a_n\ne0\). Giả sử \(\alpha\) là nghiệm của P(x). Chứng minh rằng:
a) \(\left|\alpha\right|< 1+max\left|\dfrac{a_i}{a_n}\right|\left(0\le i\le n-1\right)\)
b) \(\left|\alpha\right|\le2max\left|\dfrac{a_i}{a_n}\right|\left(0\le i\le n-1\right)\)
- Nếu \(a_i=0\) ; \(\forall i\in\left(0;n-1\right)\Rightarrow a_nx^n=0\Rightarrow\alpha=0< 1\) thỏa mãn
- Nếu tồn tại \(a_i\ne0\), đặt \(max\left|\dfrac{a_i}{a_n}\right|=A>0\)
Do \(\alpha\) là nghiệm nên:
\(a_n\alpha^n+a_{n-1}\alpha^{n-1}+...+a_1\alpha+a_0=0\)
\(\Leftrightarrow\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}=-\alpha^n\)
\(\Leftrightarrow\left|\alpha^n\right|=\left|\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le\left|\dfrac{a_0}{a_n}\right|+\left|\dfrac{a_1}{a_n}\right|.\left|\alpha\right|+...+\left|\dfrac{a_{n-1}}{a_n}\right|.\left|\alpha^{n-1}\right|\le A+A.\left|\alpha\right|+...+A.\left|\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le A\left(1+\left|\alpha\right|+\left|\alpha^2\right|+...+\left|\alpha^{n-1}\right|\right)\)
\(\Rightarrow\left|\alpha^n\right|\le A.\dfrac{\left|\alpha^n\right|-1}{\left|\alpha\right|-1}\)
TH1: Nếu \(\left|\alpha\right|\le1\) hiển nhiên ta có \(\left|\alpha\right|< 1+A\) (đpcm)
TH2: Nếu \(\left|\alpha\right|>1\)
\(\Rightarrow\left|\alpha^n\right|\le\dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}-\dfrac{A}{\left|\alpha\right|-1}< \dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}\)
\(\Leftrightarrow\left|\alpha\right|-1< A\Rightarrow\left|\alpha\right|< 1+A\) (đpcm)
chung minh rang moi so tu nhien n thi so 9 2n -1 chia het cho 2
9^2n=(9^2)^n=81^n
Vì 81^n-1 có tận cùng = 0 nên sẽ chia hết cho 2
9^2n=(9^2)^n=81^n
vì 81^n-1 có tận cùng bằng 0 nên sẽ chia hết cho 2
9^2n=(9.2)^n=81^n
vì 81^n-1 có tận cùng là số 0 nên sẽ chia hết cho 2
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{x+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình