1)cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)
a) tìm m để pt có nghiệm dương
b)gọi x1,x2 là 2 nghiệm của pt.tìm m nguyên dương để A=\(\left(\frac{x1}{x2}\right)^2+\left(\frac{x2}{x1}\right)^2\) có giá trị nguyên
2) Giải phương trình sau: \(\frac{1}{\left(x-1\right)^2}+\sqrt{3x+1}=\frac{1}{x^2}+\sqrt{x+2}\)
3) tìm cặp (x,y) nguyên sao cho x<y và \(\sqrt{x}+\sqrt{y}=\sqrt{2012}\)
4)có hay ko số tự nhiên n thỏa \(2012+n^2\) là số chính phương .tìm n
Cho hai số thực dương x,y thỏa mãn \(x+y+1=3xy\)
Tìm GTLN của:
\(M=\dfrac{3x}{y\left(x+1\right)}+\dfrac{3y}{x\left(y+1\right)}-\dfrac{1}{x^2}-\dfrac{1}{y^2}\)
1) cho x,y,z là các số thực thỏa mãn \(\left\{{}\begin{matrix}xyz=2\\2+x+xy\ne0\end{matrix}\right.\)
tính B= \(\dfrac{1}{1+y+yz}+\dfrac{2}{2+2z+xz}+\dfrac{2}{2+x+xy}\)
2) giải hpt \(\left\{{}\begin{matrix}\left(y^2-4y\right)\left(2y-x\right)=2\\y^2-2y-x=3\end{matrix}\right.\)
3)GPT \(x^2-2x=2\sqrt{2x-1}\)
4) tìm n nguyên dương để A=\(2^9+2^{13}+2^n\) là số chính phương
5) tìm Min của A=\(\dfrac{\left(x+y+1\right)^2}{xy+y+x}+\dfrac{xy+y+x}{\left(x+y+1\right)^2}\) (x;y dương )
Cho các số thực x,y,z thỏa mãn: \(x+y\le z\). CMR: \(\left(x^2+y^2+z^2\right).\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge\frac{27}{2}\)
Giả sử x, y lá các số dương thỏa mãn đẳng thức: \(x+y=\sqrt{10}\). Tìm giá trị của x, y để biểu thức: \(P=\left(x^4+1\right)\left(y^4+1\right)\)đạt giá trị nhỏ nhất. Giá trị nhỏ nhất bằng bao nhiêu?
Rút gọn biểu thức : A=\(\frac{\sqrt{1-\sqrt{1-x^2}}\left(\sqrt{\left(x+1\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\) với -1\(\le\) x \(\le\) 1
cm bất đẳng thức sau với a,b,c dương thỏa mãn a+b+c=1
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge3\left(a^2+b^2+c^2\right)\)
nhanh nhé mình cần gấp
Cho các số thực dương x , y , z thỏa mãn \(x^2+y^2+z^2\ge\frac{1}{3}\)
Chứng minh rằng \(\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\ge\frac{1}{30}\)
Chứng minh với mọi a , b , c > 0 ta luôn có :
\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\)