Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Bích Ngọc
Xem chi tiết
Le Thi Khanh Huyen
7 tháng 10 2016 lúc 13:40

Bài 1 :

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0^2\)

\(a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Rightarrow\left[a^2+b^2+c^2\right]^2=\left[-2\left(ab+bc+ac\right)\right]^2\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4\left(a^2b^2+b^2c^2+a^2c^2+2ab.bc+2bc.ac+2ab.ac\right)\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)\)

Mà \(a+b+c=0\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2\)

Bớt cả 2 vế đi \(2a^2b^2+2a^2c^2+2b^2c^2;\)có :

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)

Cộng cả 2 vế với \(a^4+b^4+c^4;\)có :

\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)( Hằng đẳng thức bình phương tổng 3 hạng tử )

Vậy ...

Phan Thanh Tịnh
7 tháng 10 2016 lúc 13:50

Bình phương cả 2 vế của a + b + c = 0,ta có :

a+ b2 + c2 + 2(ab + bc + ca) => a2 + b2 + c2 = -2(ab + bc + ca).Bình phương cả 2 vế của đẳng thức bên,ta có :

a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 4[a2b2 + b2c+ a2c2 + 2abc(a + b + c)] = 4(a2b2 + b2c2 + a2c2)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2

=> (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = a4 + b4 + c4 + a4 + b4 + c4 = 2(a4 + b4 + c4

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

Le Thi Khanh Huyen
7 tháng 10 2016 lúc 13:53

Bài 2 :

Ta có :

\(F=x^2+5y^2+4xy-6x+6y-10\)

Bài này khó ở chỗ \(4xy\)dùng để đánh lừa mình :)

\(=x^2-6x+4xy+9+4y^2-6y+y^2-1\)

\(=\left[x^2-2x\left(4-2y\right)+\left(3^2+4y^2-6y\right)\right]+y^2-1\)

\(=\left[x^2-2x\left(3-2y\right)+\left(3-2y\right)^2\right]+y^2-1\)

\(=\left[x-\left(3-2y\right)\right]^2+y^2-1\)

\(=\left(x-3+2y\right)^2+y^2-1\)

Có \(\left(x-3+2y\right)^2\ge0\)

\(y^2\ge0\)

\(\Rightarrow F\ge0+0-1=-1\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x-3+2y=0\\y=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

Mây
Xem chi tiết
Nguyễn Thị Xuân Dung
22 tháng 7 2018 lúc 12:57

\(B=5-8x+x^2=x^2-8x+16-11=\left(x-4\right)^2-11\)

Vậy giá trị nhỏ nhất của B là -11 khi x = 4

Nguyễn Thị Xuân Dung
22 tháng 7 2018 lúc 13:11

\(C=x^2+y^2-6x+5y+1=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{57}{4} \)

                                                           \(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{57}{4}\)

Vậy GTNN của C là \(-\frac{57}{4}\)khi x = 3; y = \(-\frac{5}{2}\)

Mây
22 tháng 7 2018 lúc 13:21

giúp mình làm câu a và d đc ko

Trần Văn Thành
Xem chi tiết
.........
Xem chi tiết

a: \(-x^2+2x-4\)

\(=-\left(x^2-2x+4\right)\)

\(=-\left(x^2-2x+1+3\right)\)

\(=-\left\lbrack\left(x-1\right)^2+3\right\rbrack=-\left(x-1\right)^2-3\le-3\forall x\)

=>\(\frac{1}{-x^2+2x-4}\ge-\frac13\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

b: \(-4x^2+12x-13\)

\(=-\left(4x^2-12x+13\right)\)

\(=-\left(4x^2-12x+9+4\right)\)

\(=-\left\lbrack\left(2x-3\right)^2+4\right\rbrack=-\left(2x-3\right)^2-4\le-4\forall x\)

=>\(\frac{12}{-4x^2+12x-13}\ge\frac{12}{-4}=-3\forall x\)

Dấu '=' xảy ra khi 2x-3=0

=>2x=3

=>\(x=\frac32\)

c: Đặt \(A=\frac{x^2-4x-4}{x^2-4x+5}\)

\(=\frac{x^2-4x+5-9}{x^2-4x+5}\)

\(=1-\frac{9}{x^2-4x+5}\)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1\)

\(=\left(x-2\right)^2+1\ge1\forall x\)

=>\(\frac{9}{\left(x-2\right)^2+1}\le\frac91=9\forall x\)

=>\(-\frac{9}{\left(x-2\right)^2+1}\ge-9\forall x\)

=>\(A=-\frac{9}{\left(x-2\right)^2+1}+1\ge-9+1=-8\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

e: Đặt \(B=\frac{x^2-2011}{4\left(x^2+1\right)}\)

\(=\frac14\cdot\frac{4x^2-8044}{4x^2+4}=\frac14\cdot\frac{x^2-2011}{x^2+1}=\frac14\left(\frac{x^2+1-2012}{x^2+1}\right)=\frac14\left(1-\frac{2012}{x^2+1}\right)\)

Ta có: \(x^2+1\ge1\forall x\)

=>\(\frac{2012}{x^2+1}\le2012\forall x\)

=>\(-\frac{2012}{x^2+1}\ge-2012\forall x\)

=>\(1-\frac{2012}{x^2+1}\ge-2012+1=-2011\forall x\)

=>\(\frac14\left(1-\frac{2012}{x^2+1}\right)\ge-\frac{2011}{4}\forall x\)

Dấu '=' xảy ra khi x=0

Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

shoppe pi pi pi pi
Xem chi tiết
tth_new
11 tháng 5 2019 lúc 20:35

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

Trần Thanh Phương
12 tháng 5 2019 lúc 8:00

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

shoppe pi pi pi pi
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 5 2019 lúc 15:42

\(A=x^2+y^2+2xy+4x+4y+4+y^2+2y+1+14\)

\(A=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

\(B=2\left(x^2+xy+\frac{y^2}{4}\right)+\frac{1}{2}\left(y^2-4y+4\right)-6\)

\(B=2\left(x+\frac{y}{2}\right)^2+\frac{1}{2}\left(y-2\right)^2-6\ge-6\)

\(\Rightarrow B_{min}=-6\) khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Câu c đề sai, sao vừa có 2xy lại có cả 4xy

Lê Phan Thảo Đan
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:14

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:20

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

Phạm Tường Lan Vy
Xem chi tiết