Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Yến
Xem chi tiết
Thanh Dii
Xem chi tiết
Hày Cưi
Xem chi tiết
Đỗ Quang Sinh
7 tháng 12 2018 lúc 22:48

<=> \(x^4\left(\sqrt{x+3}-2\right)\)\(+2018\left(x-1\right)=0\)

<=>\(x^4\left(\dfrac{x+3-4}{\sqrt{x+3}+2}\right)+2018\left(x-1\right)=0\)

<=>\(x^{\text{4}}\left(\dfrac{x-1}{\sqrt{x+3}+2}\right)+2018\left(x-1\right)=0\)

<=>\(\left(x-1\right)\left(\dfrac{x^4}{\sqrt{x+3}+2}+2018\right)=0\)

=>x-1=0 <=>x=1

Nguyễn Thu Trang
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:39

\(y\left(x+1\right)^2=-x^2+2018x-1\)

\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)

\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)

Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau

\(\Rightarrow2020⋮\left(x+1\right)^2\)

Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)

 

Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:43

b.

Từ pt đầu:

\(x^2+xy-2y^2+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)

Thế xuống dưới ...

Nguyễn Lâm Ngọc
Xem chi tiết
Thắng Nguyễn
11 tháng 3 2018 lúc 7:20

ĐK: \(x\ge\frac{2017}{2018}\)

\(pt\Leftrightarrow2017\sqrt{2017x-2016}-2017+\sqrt{2018x-2017}-1=0\)

\(\Leftrightarrow2017\frac{2017\left(x-1\right)}{\sqrt{2017x-2016}+1}+\frac{2018\left(x-1\right)}{\sqrt{2018x-2017}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}\right)=0\)

Dễ thấy với \(x\ge\frac{2017}{2018}\Rightarrow\)\(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}>0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

ho minh quan
Xem chi tiết
Đỗ Ngọc Hải
16 tháng 4 2018 lúc 20:16

Pttđ: \(x^2-x-1=2018\left(\sqrt{x^2+x+2}-\sqrt{2x^2+1}\right)\)(1)
Đặt \(\sqrt{2x^2+1}=a;\sqrt{x^2+x+2}=b\Rightarrow x^2-x-1=a^2-b^2\)
(1) <=> a2-b2=2018(b-a)
<=>(a-b)(a+b)=-2018(a-b)
<=>a=b hoặc a+b=-2018
Tự giải tiếp nha
 

Hau Van
Xem chi tiết
mai đoàn hương
Xem chi tiết