Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đen xjnh géi
Xem chi tiết
Yeutoanhoc
2 tháng 6 2021 lúc 10:08

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

_Halcyon_:/°ಠಿ
2 tháng 6 2021 lúc 10:12

A= x2 - 4x +1

   = x2 - 4x + 4 - 3

   = (x-2)2 -3

Ta có (x-2)2 ≥ 0 ∀ x

    ⇒ (x-2)2 -3 ≥ -3 ∀ x

Vậy AMin= -3 tại x=2

B= 4x2+4x+11

  = 4x2+4x+1+10

  = (2x+1)2+10

Ta có (2x+1)2 ≥ 0 ∀ x

     ⇒ (2x+1)2+10 ≥ 10 ∀ x

Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)

C=(x-1)(x+3)(x+2)(x+6)

  = (x-1)(x+6)(x+3)(x+2)

  = (x2+5x-6) (x2+5x+6)

  = (x2+5x)2 -36

Ta có (x2+5x)≥ 0 ∀ x
  ⇒ (x2+5x)2 -36 ≥ -36 ∀ x

Vậy CMin=-36 tại x=0 hoặc x= -5

蝴蝶石蒜
Xem chi tiết
Akai Haruma
30 tháng 5 2021 lúc 17:39

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

Akai Haruma
30 tháng 5 2021 lúc 17:42

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

Cam 12345
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 19:28

Ủa cái biểu thức cho đó là gì vậy '-'?? Chắc là x-x2-1 ha...

Ta có: \(A=x-x^2-1=-x^2+x-1=-\left(x^2-x+1\right)\)

\(=-\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)

Vậy MaxA=-3/4 khi x=1/2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 4 2017 lúc 10:08

19.8A Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 12 2021 lúc 20:31

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2018 lúc 10:58

Chọn C

Tập xác định của hàm số: D = [-2;2]

Ta có 

Ta lại có 

Từ đó suy ra 

Vậy 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2019 lúc 3:25

Chọn C.

Tập xác định của hàm số 

Cách 1: Bấm máy tính. Với máy 580vn chọn start:-2, end: 2, step: 2/9 có: 

 

 thử thấy phương án C gần nhất với kết quả này nên ta chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 1 2018 lúc 5:21

Đáp án B

Ta có  P = 2 x 3 + y 3 - 3 x y = 2 x + y x 2 - x y + y 2 - 3 x y = 2 x + y 2 - x y - 3 x y

Mặt khác  x 2 + y 2 = 2 ⇔ x + y 2 - 2 x y = 2 ⇔ 2 x y = x + y 2 - 2 ≤ x + y 2 2 ⇔ - 2 ≤ x + y ≤ 2

Khi đó   2 P = 2 x + y 4 - 2 x y - 6 x y = 2 x + y 4 - x + y 2 + 2 - 3 x + y 2 - 2

= 6 + 12 x + y - 3 x + y 2 - 2 x + y 3 = f t = 6 + 12 t - 3 t 2 - 2 t 3

Với   t = x + y ∈ - 2 ; 2

Xét hàm số f t = 6 + 12 t - 3 t 2 - 2 t 3  trên đoạn [-2;2] ta có

f ' t = 12 - 6 t - 6 t 2 ; f ' t = 0 ⇔ [ t = - 2 t = 1

So sánh các giá trị f(-2);f(1);f(2), ta được  m a x - 2 ; 2 f t = f 1 = 13 ⇒ M = 13 2 .

Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Pham Ngoc Diep
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 19:20

Bài 4:

\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)

Bài 5:

\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)