Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 13:28

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

LuKenz
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 21:26

Từ H kẻ \(HD\perp AC\Rightarrow HD||BK\) (cùng vuông góc AC)

Mà ABC cân tại A \(\Rightarrow\) H là trung điểm BC \(\Rightarrow HC=\dfrac{BC}{2}\)


\(\Rightarrow\) HD là đường trung bình tam giác BCK

\(\Rightarrow HD=\dfrac{BK}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao HD ứng với cạnh huyền:

\(\dfrac{1}{HD^2}=\dfrac{1}{AH^2}+\dfrac{1}{CH^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{BK}{2}\right)^2}=\dfrac{1}{AH^2}+\dfrac{1}{\left(\dfrac{BC}{2}\right)^2}\)

\(\Leftrightarrow\dfrac{4}{BK^2}=\dfrac{1}{AH^2}+\dfrac{4}{BC^2}\)

\(\Leftrightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 21:27

undefined

Nguyễn Đức Tường Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 13:28

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

LuKenz
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 13:28

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Hoàng Đình Đại
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 13:28

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Trân nguyễn
Xem chi tiết
Tô Hồng Nhân
20 tháng 10 2015 lúc 19:09

tick cho mình đi rồi mình giải câu c

LuKenz
Xem chi tiết
Lê Thị Thục Hiền
2 tháng 7 2021 lúc 21:09

a) Do AH là đường cao trong tam giác ABC cân tại A

\(\Rightarrow\) AH cũng là đường trung tuyến trong tam giác ABC

Suy ra H là trung điểm của BC.

mà AH//BD (vì cùng vuông góc với BC)

\(\Rightarrow\) AH là đường trung bình của tam giác DBC

\(\Rightarrow\) 2AH=BD

b)Áp dụng hệ thức trong tam giác vuông có 

\(\dfrac{1}{BK^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{\left(2AH\right)^2}+\dfrac{1}{BC^2}\) \(=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Vậy...

Phan Ngọc Thảo Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 13:28

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Lee Je Yoon
Xem chi tiết
Hoàng Lê Bảo Ngọc
20 tháng 8 2016 lúc 15:55

A B C D H K

Từ B kẻ BD vuông góc với BD , cắt CA tại D. 

=> Tam giác BCD vuông tại B có đường trung tuyến AB

=> AB = AC = AD

Ta có : \(\begin{cases}AH\text{//}BD\\AC=AD\end{cases}\) => AH là đường trung bình của tam giác BCD

=> \(AH=\frac{1}{2}BD\Rightarrow AH^2=\frac{BD^2}{4}\Rightarrow BD^2=4AH^2\)

Áp dụng hệ thức về cạnh trong tam giác vuông BDC có : 

\(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\Leftrightarrow\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\) 

Nguyễn Thu Mến
24 tháng 8 2016 lúc 15:17

he thuc lg la ra ngay

Đỗ Thị Vân Nga
26 tháng 8 2016 lúc 13:06

bạn cũng thích Chan hả