Tìm a sao cho \(\left(2n^2+x+a\right)⋮\left(x+3\right)\)
Tìm \(x\in Z\) để \(\left(2x^3-3x^2+2x+2\right)⋮\left(x^2+1\right)\)
Tìm dư cho phép chia \(x^{20}-x+1\) cho \(x^2-1\)
@Liana.......... giúp mình với
Tìm a sao cho \(\left(2n^2+x+a\right)⋮\left(x+3\right)\)
Tìm \(x\in Z\) để \(\left(2x^3-3x^2+2x+2\right)⋮\left(x^2+1\right)\)
Tìm dư cho phép chia \(x^{20}-x+1\) cho \(x^2-1\)
@Liana.......... giúp mình với
1.Cho A=\(\dfrac{2x+1}{\left(x-4\right)\left(x-3\right)}-\dfrac{x+3}{x-4}+\dfrac{2x+1}{x-3}\)
a.Rút gọn biểu thức A
b.Tính giá trị của A biết \(x^2+20=9x\)
2.Tìm đa thức thương vfa đa thức dư trong phép chia:\(\left(2x^3-7x^2+13x+2\right):\left(2x-1\right)\)
3.Cho hình thang ABCD có góc A = góc D = 90 độ,AB=AD=\(\dfrac{1}{2}\)CD.Gọi M là trung điểm của CD.
a.Tứ giác ABCM;ABCD là hình gì?Vì sao?
b.Cho AC cắt BD tại E, AM cắt BD tại O.Gọi N là trung điểm của MC.C/m tứ giác DOEN là hình thang cân.
c.Kẻ DI vuông góc vs AC (I thuộc AC) DI cắt AM tại H.Gọi K là giao điểm của AM và DE.C/m DH=DK
(vẽ hình giúp e vs ạ, e cảm ơn)
Bài chia đa thức 1 biến đã sắp xếp
1) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
2) \(\left(x^4-x^3+x^3+3x\right):\left(x^2-2x+3\right)\)
3) Tìm n thuộc Z để \(2n^2-n+2\)chia hết cho \(2n+1\)
Bài chia đa thức 1 biến đã sắp xếp
1) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
2) \(\left(x^4-x^3+x^3+3x\right):\left(x^2-2x+3\right)\)
3) Tìm n thuộc Z để \(2n^2-n+2\)chia hết cho \(2n+1\)
a,
b,
3/
\(\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=n-1+\frac{3}{2n+1}\)
Để \(2n^2-n+2⋮2n+1\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng:
2n+1 | 1 | -1 | 3 | -3 |
n | 0 | -1 | 1 | -2 |
Vậy...
Cho biểu thức:
A\(=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
a/ Rút gọn A
b/ Tìm x ∈ Z để A nguyên
ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)
a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)
\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)
\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)
\(=\dfrac{3x}{x-2}\)
b) Để A nguyên thì \(3x⋮x-2\)
\(\Leftrightarrow3x-6+6⋮x-2\)
mà \(3x-6⋮x-2\)
nên \(6⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(6\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{3;1;4;0;5;8;-4\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)
Cho \(E=\left\{x\in Z|\left|x\right|\le5\right\}\); \(A=\left\{x\in R|x^2+3x-4=0\right\}\);
\(B=\left\{x\in Z|(x-2)(x+1)(2x^2-x-3)=0\right\}\)
a) CM \(A\subset E\),\(B\subset E\)
b) Tìm \(E\backslash\left(A\cap B\right)\),\(E\backslash\left(A\cup B\right)\) rồi tìm quan hệ giữa hai tập hợp này.
\(E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A=\left\{1;-4\right\}\)
\(B=\left\{2;-1\right\}\)
a) Với mọi x thuộc A đều thuộc E \(\Rightarrow A\subset E\)
Với mọi x thuộc B đều thuộc E \(\Rightarrow B\subset E\)
b) \(A\cap B=\varnothing\)
\(\Rightarrow E\backslash\left(A\cap B\right)=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A\cup B=\left\{-4;-1;1;2\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)=\left\{-5;-3;-2;0;3;4;5\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)\subset E\backslash\left(A\cap B\right)\)
tìm x thuộc Z sao cho:
c, (4x+1) chia hết (2x+2)
e, \(\left(x^2-2x+3\right)⋮\left(x-1\right)\)
f,\(\left(3x-1\right)⋮\left(x-4\right)\)
g, \(\left(x^2+3x+9\right)⋮\left(x+3\right)\)
h, \(\left(2x^2-10x+5\right)⋮\left(x-5\right)\)
1.Tìm x biết:
\(\left(x-2\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+\left(2x-3\right)\left(3x-2\right)=0\)
2.Tìm a để \(A=x^3-2x^2+x-a+2\) chia cho \(B=x+3\) có dư bằng 5
3. \(Cho:a+b=1\)
Tính \(a^3+b^3+3ab\)
1. Có bao nhiêu \(m\in Z\) \(\in\left[-30;40\right]\) để bpt sau đúng \(\forall x\in R\)
\(a.\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)\ge m\)
b.\(b.\left(x^2-2x+4\right)\left(x^2+3x+4\right)\ge mx^2\)
2. Tìm m để pt
\(\left(m+3\right)x-2\sqrt{x^2-1}+m-3=0\) có nghiệm \(x\ge1\)
1.a.
\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)
Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)
\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)
Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)
\(\Rightarrow f\left(t\right)\ge-1\)
\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)
Có 30 giá trị nguyên của m
1b.
Với \(x=0\) BPT luôn đúng
Với \(x\ne0\) BPT tương đương:
\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)
\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)
Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)
Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)
\(\Rightarrow f\left(t\right)\ge6\)
\(\Rightarrow m\le6\)
Vậy có 37 giá trị nguyên của m thỏa mãn
2.
Xét với \(x\ge1\)
\(m\left(x+1\right)+3\left(x-1\right)-2\sqrt{x^2-1}=0\)
\(\Leftrightarrow m+3\left(\dfrac{x-1}{x+1}\right)-2\sqrt{\dfrac{x-1}{x+1}}=0\)
Đặt \(\sqrt{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)
\(\Rightarrow m+3t^2-2t=0\)
\(\Leftrightarrow3t^2-2t=-m\)
Xét hàm \(f\left(t\right)=3t^2-2t\) trên \(D=[0;1)\)
\(-\dfrac{b}{2a}=\dfrac{1}{3}\in D\) ; \(f\left(0\right)=0\) ; \(f\left(\dfrac{1}{3}\right)=-\dfrac{1}{3}\) ; \(f\left(1\right)=1\)
\(\Rightarrow-\dfrac{1}{3}\le f\left(t\right)< 1\)
\(\Rightarrow\) Pt có nghiệm khi \(-\dfrac{1}{3}\le-m< 1\)
\(\Leftrightarrow-1< m\le\dfrac{1}{3}\)
Cho đa thức \(f\left(x\right)=6x^3-7x^2-16x+m\cdot f\left(x\right)\) chia hết cho \(2x-5\). Tìm \(m\) và số dư phép chia \(f\left(x\right)\) cho \(3x-2\).
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2\):
\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)
Do chia hết , theo định lý Bezout:
Khi đó
Số dư phép chia cho :
\(f\left(x\right)=6x^3-7x^2-16x+m\)
Do \(f\left(x\right)⋮2x-5\) , theo định lý Bezout:
\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6\left(\dfrac{5}{2}\right)^3-7\left(\dfrac{5}{2}\right)^2-16\left(\dfrac{5}{2}\right)+m=0\)
\(\Rightarrow m=-10\)
Khi đó \(f\left(x\right)=6x^3-7x^2-16x-10\)
Số dư phép chia cho \(3x-2:\)
\(f\left(\dfrac{2}{3}\right)=6\left(\dfrac{2}{3}\right)^3-7\left(\dfrac{2}{3}\right)^2-16\left(\dfrac{2}{3}\right)-10=-22\)