Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 12:15

Để \(x=\dfrac{\sqrt{n-1}}{2}\) là số nguyên thì \(\sqrt{n-1}⋮2\)

=>\(n-1=\left(2k\right)^2=4k^2\)(k\(\in\)Z) và n>=1

=>\(n=4k^2+1\)

n<30

=>\(4k^2+1< 30\)

=>\(4k^2< 29\)

=>\(k^2< \dfrac{29}{4}\)

mà k nguyên

nên \(k^2\in\left\{0;1;4\right\}\)

\(n=4k^2+1\)

=>\(n\in\left\{1;5;17\right\}\)

....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 16:48

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó:

\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)

Đặng Công Minh Nghĩa
Xem chi tiết
....
Xem chi tiết
Lê Thị Thục Hiền
11 tháng 6 2021 lúc 19:59

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.

Đặng Công Minh Nghĩa
Xem chi tiết
Phí Quỳnh Anh
Xem chi tiết
Nguyễn Xuân Anh
8 tháng 10 2018 lúc 23:28

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)

\(\Rightarrow\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}\)

\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}\)

\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n}-\sqrt{n+1}}{-1}\)

\(=\frac{1-\sqrt{n+1}}{-1}=\sqrt{n+1}-1\ge2014\)

                                  \(\Leftrightarrow\sqrt{n+1}\ge2015\)

                                 \(\Leftrightarrow n+1=2015^2=4060225\)

\(V~~n=4060224\)

 Quỳnh Anh Shuy
Xem chi tiết
tran nguyen bao quan
9 tháng 10 2018 lúc 20:15

Ta có \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\left(\sqrt{n}-\sqrt{n+1}\right)=\sqrt{n+1}-\sqrt{n}\)

Vậy \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{n+1}-\sqrt{n}=-1+\sqrt{n+1}=\sqrt{n+1}-1\ge2014\Leftrightarrow\sqrt{n+1}\ge2015\Leftrightarrow n+1\ge2015^2\Leftrightarrow n\ge2015^2-1\)Vậy số tự nhiên n nhỏ nhất là 20152-1

boy not girl
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 3 2021 lúc 21:45

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

HELLO^^^$$$
27 tháng 3 2021 lúc 7:44

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

sad boy haizzz
6 tháng 2 2023 lúc 20:52

Ta có: =4+6−3n−1=4+6−3�−1

tran khanh my
Xem chi tiết
Phạm Ngọc Thạch
8 tháng 6 2017 lúc 22:09

New (cách mới) : Đặt \(x=\frac{49-\sqrt{2401-4n}}{2}\) là số chính phương.

\(\frac{49-\sqrt{2401-4n}}{2}\le\frac{49}{2}\), các số chính phương nhỏ hơn 49/2 là 0; 1; 4; 9; 16

+ Nếu x= 16 -> \(49-\sqrt{2401-4n}=\)32 => \(\sqrt{2401-4n}=\)17 (loại)

+ Nếu x= 9 -> \(49-\sqrt{2401-4n}=\)18 => \(\sqrt{2401-4n}=\)31 (loại)

+ Nếu x= 4 -> \(49-\sqrt{2401-4n}=\)8 => \(\sqrt{2401-4n}=\)41 (loại)

+ Nếu x= 1 -> \(49-\sqrt{2401-4n}=\)2 => \(\sqrt{2401-4n}=\)47 (loại)

+ Nếu x= 0 -> \(49-\sqrt{2401-4n}=\)0 => \(\sqrt{2401-4n}=\)49 => 2041 - 4n = 492 = 2041

=> 4n = 0 => n =0

 Thay n=0 vào biểu thức được kết quả là 7 nên n=0 để biểu thức có giá trị nguyên.

Phạm Ngọc Thạch
8 tháng 6 2017 lúc 21:57

\(\sqrt{\frac{49+\sqrt{2401-4n}}{2}}+\sqrt{\frac{49-\sqrt{2401-4n}}{2}}\)

ĐK: 2401 - 4n ≥ 0 => n ≤ 600

Đặt x = \(\sqrt{2401-4n}\)

Để biểu thức có giá trị nguyên thì 2401-4n là số chính phương; (49+x)/2 và (49-x)/2 là số chính phương

=>(492 - x2)/4 là số chính phương

=>   (2401 - x2)/4 = (2401-2401+4n)/4 = n là số chính phương

Ta có: n=k2 (k≥0)

=> 492 - (2k)2 = (49-2k)(49+2k) là số chính phương.

Thay k từ 0 đến 24 (nếu k>24 thì 49-2k<0) chỉ có k=0 thỏa mãn để (49-2k)(49+2k) là số chính phương.  => n =0

Vậy n =0 để biểu thức có giá trị nguyên (=7)

----

Tới bước cuối ko nghĩ ra đc nữa nên mò :3

Nguyễn thành Đạt
Xem chi tiết
Lê Song Phương
11 tháng 6 2023 lúc 21:56

Câu 1:

Ta thấy \(S_2=\dfrac{\sqrt{3}+S_1}{1-\sqrt{3}S_1}=\dfrac{\sqrt{3}+1}{1-\sqrt{3}}=\dfrac{\left(1+\sqrt{3}\right)^2}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\)\(=\dfrac{4+2\sqrt{3}}{-2}=-2-\sqrt{3}\)

Từ đó \(S_3=\dfrac{\sqrt{3}+S_2}{1-\sqrt{3}S_2}=\dfrac{\sqrt{3}-2-\sqrt{3}}{1-\sqrt{3}\left(-2-\sqrt{3}\right)}=\dfrac{-2}{4+2\sqrt{3}}=\dfrac{1}{-2-\sqrt{3}}\) 

và \(S_4=\dfrac{\sqrt{3}+S_3}{1-\sqrt{3}S_3}=\dfrac{\sqrt{3}+\dfrac{1}{-2-\sqrt{3}}}{1-\dfrac{\sqrt{3}}{-2-\sqrt{3}}}=\dfrac{-2\sqrt{3}-3+1}{-2-\sqrt{3}-\sqrt{3}}=1\)

Đến đây ta thấy \(S_4=S_1\). Cứ tiếp tục làm như trên, ta rút ra được:

\(S_{3k+1}=1\)\(S_{3k+2}=-2-\sqrt{3}\) và \(S_{3k+3}=\dfrac{1}{-2-\sqrt{3}}\), với \(k\inℕ\) 

Ta tính số các số thuộc mỗi dạng \(S_{3k+i}\left(i=1,2,3\right)\) từ \(S_1\) đến \(S_{2017}\).

 - Số các số hạng có dạng \(S_{3k+1}\) là \(\left(2017-1\right):3+1=673\) số

 - Số các số hạng có dạng \(S_{3k+2}\) là \(\left(2015-2\right):3+1=672\) số

 - Số các số hạng có dạng \(S_{3k+3}\) là \(\left(2016-3\right):3+1=672\) số

Như thế, tổng S có thể được viết lại thành 

\(S=\left(S_1+S_4+...+S_{2017}\right)+\left(S_2+S_5+...+S_{2015}\right)+\left(S_3+S_6+...+S_{2016}\right)\)

\(S=613+612\left(-2-\sqrt{3}\right)+612\left(\dfrac{1}{-2-\sqrt{3}}\right)\)

Tới đây mình lười rút gọn lắm, nhưng ý tưởng làm bài này là như vậy.

 

Xyz OLM
12 tháng 6 2023 lúc 22:24

Có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=5\) (1)

\(\Leftrightarrow\dfrac{\left(x-\sqrt{x^2+5}\right).\left(x+\sqrt{x^2+5}\right)}{x+\sqrt{x^2+5}}.\dfrac{\left(y-\sqrt{y^2+5}\right).\left(y+\sqrt{y^2+5}\right)}{y+\sqrt{y^2+5}}=5\)

\(\Leftrightarrow\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)=5\) (2) 

Từ (1) và (2) ta có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)\)

\(\Leftrightarrow x\sqrt{y^2+5}+y\sqrt{x^2+5}=0\)

\(\Leftrightarrow x^2\left(y^2+5\right)=y^2\left(x^2+5\right)\left(y\le0;x\ge0\right)\)

\(\Leftrightarrow x^2-y^2=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(\text{loại}\right)\\x=-y\left(\text{nhận}\right)\end{matrix}\right.\)

Khi đó M = x3 + y3 = 0

N = x2 + y2 = 2y2

Nguyễn thành Đạt
14 tháng 6 2023 lúc 20:09

Anh xyz ơi giải thích hộ em chỗ (2) ấy.