Cho x, y là 2 số dương và x+y=1. Tìm GTNN của:
P=\(\dfrac{1}{2xy}\)
Help me!!!
Cho x, y là 2 số dương và x+y=1. Tìm GTNN của:
M=\(\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\)
Help me!!!
\(\dfrac{4}{2xy}+\dfrac{4}{x^2+y^2}-\dfrac{1}{x^2+y^2}\)
\(\ge\dfrac{\left(2+2\right)^2}{x^2+y^2+2xy}-\dfrac{1}{x^2+y^2}=16-\dfrac{1}{x^2+y^2}\)
\(=16-\dfrac{2}{2\left(x^2+y^2\right)}\ge\dfrac{16}{\left(x+y\right)^2}=14\)
Dấu = xảy ra khi \(x=y=\dfrac{1}{2}\)
Cách khác
Đặt xy=t
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=1-2t\)
\(\Rightarrow M=\dfrac{2}{t}+\dfrac{3}{1-2t}\)
\(M=\dfrac{2-4t+3t}{t-2t^2}=\dfrac{2-t}{t-2t^2}\)(đến đây dùng phương pháp delta)
cho các số thực dương x, y, z thỏa mãn x+y+x=3
Tìm gtnn của P = \(\dfrac{1}{2xy^2+1}+\dfrac{1}{2yz^2+1}+\dfrac{1}{zx^2+1}\)
Lời giải:
\(P=\sum \frac{1}{2xy^2+1}=\sum (1-\frac{2xy^2}{2xy^2+1})\)
\(=3-2\sum\frac{xy^2}{2xy^2+1}\geq 3-2\sum \frac{xy^2}{3\sqrt[3]{x^2y^4}}\) theo BĐT AM-GM.
\(=3-\frac{2}{3}\sum \sqrt[3]{xy^2}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt[3]{xy^2}\leq \frac{x+y+y}{3}\Rightarrow \sum \sqrt[3]{xy^2}\leq \frac{3(x+y+z)}{3}=3\)
$\Rightarrow P\geq 3-\frac{2}{3}.3=1$
Vậy $P_{\min}=1$. Giá trị này đạt tại $x=y=z=1$
Cho x,y là các số dương thỏa mãn \(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm GTNN của C = x+y
Đề bài sai, C không có giá trị nhỏ nhất
Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C
Cho x, y là các số thực dương thỏa mãn x + \(\dfrac{1}{y}\) = 1. Tìm GTNN của P = \(\dfrac{x}{y}+\dfrac{y}{x}\)
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( với a, b dương), tìm GTNN của biểu thức: \(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\) với x, y là 2 số dương và x+y=1
\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).
Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)
cho x,y là các số dương thỏa man: x+y=1
Tìm GTNN của B=\(\left(\text{x}+\dfrac{1}{\text{x}}\right)^{2^{ }}+\left(y+\dfrac{1}{y}\right)^2\)
Ta có \(B\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\) \(=\dfrac{\left(1+\dfrac{1}{xy}\right)^2}{2}\)
Lại có \(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow B\ge\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Vậy GTNN của B là \(\dfrac{25}{2}\) khi \(x=y=\dfrac{1}{2}\)
cho 2 số dương x,y sao cho x+y=1. Tìm GTNN của biểu thức:
P=\(\dfrac{1}{xy}+\dfrac{1}{x^{2}+y^{2}}\)
\(P=\dfrac{1}{2xy}+\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}+\dfrac{4}{2xy+x^2+y^2}=\dfrac{6}{\left(x+y\right)^2}=6\)
\(P_{min}=6\) khi \(a=b=\dfrac{1}{2}\)
Cách khác:
Đặt $xy=t$. Bằng $AM-GM$ dễ thấy $t\leq \frac{1}{4}$
\(P=\frac{1}{xy}+\frac{1}{(x+y)^2-2xy}=\frac{1}{xy}+\frac{1}{1-2xy}=\frac{1}{t}+\frac{1}{1-2t}\)
\(=\frac{1}{t}-4+\frac{1}{1-2t}-2+6=\frac{(1-4t)(1-3t)}{t(1-2t)}+6\geq 6\) với mọi $t\leq \frac{1}{4}$
Vậy $P_{\min}=6$ khi $x=y=\frac{1}{2}$
Giúp mn vs :<
Cho x,y là các số thực dương thỏa mãn \(x+\dfrac{1}{y}< =1\). Tìm giá trị nhỏ nhất của \(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
Tìm Min của:
\(A=\dfrac{1}{x^2+y^2+1}+\dfrac{3}{2xy}\) với x: y là các số thực dương.
Thiếu đề nhé. Giả thiết đang còn có là x+y bé thua hoặc bằng 1