Xác định hệ số góc f(x)=-3x+2,y=4x+17
tính hệ số góc của các đường thẳng sau
f(x)=-3x+2:y=4x+17;f(x)=\(\dfrac{17}{18}x-\dfrac{7}{8}\)
Lời giải:
Hệ số góc của đường thẳng \(y=ax+b\) chính bằng $a$
Vậy:
Hsg của đường thẳng \(y=-3x+2\) là $-3$
Hsg của đường thẳng \(y=4x+17\) là $4$
Hsg của đường thẳng \(y=\frac{17}{18}x-\frac{7}{8}\) là \(\frac{17}{18}\)
Cho hàm số bậc hai \(y = f(x) = {x^2} - 4x + 3\)
a) Xác định hệ số a. Tính \(f(0);f(1);f(2);f(3);f(4)\) và nhận xét về dấu của chúng so với dấu của hệ số a
b) Cho đồ thị hàm số y=f(x) (H.6.17). Xét từng khoảng \(\left( { - \infty ;1} \right);\left( {1;3} \right);\left( {3; + \infty } \right)\), đồ thị nằm phía trên hay phía dưới trục Ox?
c) Nhận xét về dấu của f(x) và dấu của hệ số a trên từng khoảng đó.
a) Hệ số a là: a=1
\(f(0) = {0^2} - 4.0 + 3 = 3\)
\(f(1) = {1^2} - 4.1 + 3 = 0\)
\(f(2) = {2^2} - 4.2 + 3 = - 1\)
\(f(3) = {3^2} - 4.3 + 3 = 0\)
\(f(4) = {4^2} - 4.4 + 3 = 3\)
=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a
b) Nhìn vào đồ thị ta thấy
- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành
- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành
- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành
c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a
- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a
- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a
Cho hệ số y =f(x) xác định với mọi x thuộc R biết f(x)+5f(4) =3x2
Tính f(-3)
Tìm các hàm số bậc nhất trong các hàm số sau đây và xác định các hệ số \(a,b\) của chúng.
a) \(y = 4x + 2\); b) \(y = 5 - 3x\); c) \(y = 2 + {x^2}\);
d) \(y = - 0,2x\); e) \(y = \sqrt 5 x - 1\).
a) Hàm số \(y = 4x + 2\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = 4;b = 2\).
b) Hàm số \(y = 5 - 3x = - 3x + 5\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = - 3;b = 5\).
c) Hàm số \(y = 2 + {x^2}\) không phải là hàm số bậc nhất vì không có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\).
d) Hàm số \(y = - 0,2x\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = - 0,2;b = 0\).
e) Hàm số \(y = \sqrt 5 x - 1\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = \sqrt 5 ;b = - 1\).
a) \(y=4x+2\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)
b) \(y=5-3x\Rightarrow\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.\)
c) \(y=2+x^2\) không phải hàm số bậc nhất.
d) \(y=0,2x\Rightarrow\left\{{}\begin{matrix}a=-0,2\\b=0\end{matrix}\right.\)
e) \(y=\sqrt[]{5}x-1\Rightarrow\left\{{}\begin{matrix}a=\sqrt[]{5}\\b=-1\end{matrix}\right.\)
tìm tổng giá trị không thuộc tập xác định của hàm số: f(x)=3x-2/4x^3+3x-7
3x+7=28
3x =28-7
3x =21
x =21:3
x =7
Bài 6. Cho hai đa thức: f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4
g(x) = x5 - 9 + 2x2 +7x4 + 2x3 - 3x.
a) Sắp xếp các đa thức theo luỹ thừa giảm của biến. Xác định bậc, hệ số cao nhất, hệ số tự do của mỗi đa thức.
b) Tính tổng h(x) = f(x) + g(x) c) Tìm nghiệm của đa thức h(x).
a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9
g(x)=x^5+7x^4+2x^3+2x^2-3x-9
b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9
=3x^2+x
c: H(x)=0
=>x(3x+1)=0
=>x=0 hoặc x=-1/3
Cho hàm số y=f(x) có đạo hàm xác định và liên tục trên Rvới y = f ' ( x ) = x 3 - x 2 - 2 x . Gọi k là hệ số góc của đường thẳng đi qua hai điểm cực tiểu của đồ thị hàm số y=f(x). Khẳng định nào sau đây đúng ?
1.Tập xác định của hàm số y= ( x2-1)2/3 là
2.hệ số góc của tiếp tuyến tại A (1;0) của đồ thị hàm số y = -x3+3x -1
3.tìm tập xác định của hàm số y= log2021(x-1)
4.bất pt 2x-1<5 có tập nghiệm là
Mong mn chỉ giúp ♡
cho (d) y = -m x + 2m - 3
và (d1) y = 3x - m + 2
tìm m, biết a. (d) // (d1)
b. (d) ⊥ (d1)
c. xác định hệ số góc và tung độ góc của (d)
a, để (d) // (d1) thì \(\left\{{}\begin{matrix}-m=3\\2m-3\ne-m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\m\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow m=-3\)
b, để (d) ⊥ (d1) thì \(-m.3=-1\Rightarrow-m=-\dfrac{1}{3}\Rightarrow m=\dfrac{1}{3}\)