Tìm tập xác định của các hàm số :
a) \(y=\dfrac{1}{3^x-3}\)
b) \(y=\log\dfrac{x-1}{2x-3}\)
c) \(y=\log\sqrt{x^2-x-12}\)
d) \(y=\sqrt{25^x-5^x}\)
Tìm tập xác định của các hàm số sau :
a) \(y=\dfrac{2}{\sqrt{4^x-2}}\)
b) \(y=\log_6\dfrac{3x+2}{1-x}\)
c) \(y=\sqrt{\log x+\log\left(x+2\right)}\)
d) \(y=\sqrt{\log\left(x-1\right)+\log\left(x+1\right)}\)
Tập xác định của hàm số \(y=\left(3^x-9\right)^{-2}\) là:
A. \(D=R\)
B. \(D=R\backslash\left\{2\right\}\)
C. \(D=\left(-\infty;2\right)\)
D. \(D=\left(2;+\infty\right)\)
ĐỀ THI HỌC KỲ I
Câu 1 : giải phương trình ln (3x2 - 2x +1) = ln ( 4x - 1)
Câu 2 : Tìm tập hợp các giá trị của tham số m để phương trình 3x + 3 = m \(\sqrt{9^x+1}\) có đúng 1 nghiệm
Câu 3 : Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = -x3 + 3mx + 1 có 2 điểm cực trị A , B sao cho tam giác OAB vuông tại O ( với O là gốc tọa độ )
Cho hai hàm số :
\(f\left(x\right)=\dfrac{a^x+a^{-x}}{2};g\left(x\right)=\dfrac{a^x-a^{-x}}{2}\)
a) Chứng minh rằng \(f\left(x\right)\) là hàm số chẵn, \(g\left(x\right)\) là hàm số lẻ
b) Tìm giá trị bé nhất của \(f\left(x\right)\) trên tập xác định
Vẽ đồ thị của các hàm số sau :
a) \(y=\left(\dfrac{1}{2}\right)^x+3\)
b) \(y=2^{x+1}\)
c) \(y=3^{x-2}\)
Vẽ đồ thị của các hàm số sau :
a) \(y=\log_3\left(x-1\right)\)
b) \(y=\log_{\dfrac{1}{3}}\left(x+1\right)\)
c) \(y=1+\log_3x\)
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau :
a) \(y=x^{\sqrt{3}}\)
b) \(y=x^{\dfrac{1}{\pi}}\)
c) \(y=x^{-e}\)
Tính đạo hàm của các hàm số sau :
a) \(y=\dfrac{1}{\left(2+3x\right)^2}\)
b) \(y=\sqrt[3]{\left(3x-2\right)^2};\left(x\ne\dfrac{2}{3}\right)\)
c) \(y=\dfrac{1}{\sqrt[3]{3x-7}}\)
d) \(y=3x^{-3}-\log_3x\)
e) \(y=\left(3x^2-2\right)\log_2x\)
g) \(y=\ln\left(\cos x\right)\)
h) \(y=e^x\sin x\)
i) \(y=\dfrac{e^x-e^{-x}}{x}\)