1. Cho \(A=n^4+4\) và \(B=n^4+n^2+1\left(n\in N\right)\). Tìm n để A, B đều là số nguyên tố
2. CMR nếu p là số nguyên tố lớn hơn 3 thì \(\left(p+1\right)\left(p-1\right)⋮24\)
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
a, CMR nếu n là số nguyên dương thì \(2\left(1^{2013}+2^{2013}+...+n^{2013}\right)\) chia hết cho \(n\left(n+1\right)\)
b, Tìm tất cả các số nguyên tố p,q tm đk \(p^2-2q^2=1\)
A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)
Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)
=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)
B)
Do 1 lẻ , \(2q^2\) chẵn nên p lẻ
p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)
p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4
⇒\(q^2\):2 =>q:2 =>q=2
⇒\(q^2\)=2.2\(^2\)+1=9=>q=3
Chắc đúng vì hôm trước cô mik giải thik va, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)
=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)⋮\(\dfrac{n\left(n+1\right)}{2}\)
=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)
đpcm
1) Tính:\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
2) Tìm tất cả các số nguyên tố x,y sao cho x2 - 6y2 - 1 = 0
3) Cho \(n\in N\)biết n-10; n+4. n+60 đều là số nguyên tố. CMR: n+90 là số nguyên tố
4) Tính nhanh
\(A=\left(\frac{7}{9}+1\right)\left(\frac{7}{20}+1\right)\left(\frac{7}{33}+1\right).....\left(\frac{7}{10800}+1\right)\)
Các bn giúp mk nhanh lên nhé
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
Cứu gấp!!!
1. CMR vs mọi số n nguyên dương đều có:
\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2\right)⋮91\)
2. Cho: \(P\left(x\right)=ax^3+bx^2+cx+d\)
CMR P(x) có giá trị nguyên vs mọi x khi và chỉ khi 6a, 2b, a+b+c và d là số nguyên
3.Cho phân số: \(C=\frac{3\left|x\right|+2}{4\left|x\right|-5}\left(x\in Z\right)\)
a. Tìm x để C đạt giá trj lớn nhất, tìm giá trị lớn nhất đó.
b. Tìm x để C là số tự nhiên.
Cố lên!!!
a) Chứng minh rằng nếu số nguyên \(n\)lớn hơn 1 thỏa mãn \(n^2+4\)và \(n^2+16\)là các số nguyên tố thì \(n\)chia hết cho 5.
b) Tìm nghiệm nguyên của pt: \(x^2-2y\left(x-y\right)=2\left(x+1\right)\)
a, CMR với mọi số nguyên n không chia hết cho 5 thì \(n^4-1\) chia hết cho 5
b, Tìm tất cả các số nguyên tố a, b, c ,d, e tm \(a^4+b^4+c^4+d^4+e^4=abcde\)
c, Tìm các số nguyênduwongc a,b tm \(a\left(ab+1\right)⋮a^2+b\) và \(b\left(ab+1\right)⋮b^2-a\)
Đề HSG Nghệ An ak bạn
P = \(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5\left(n-1\right)\left(n+1\right)\)
P \(⋮5\Leftrightarrow Q=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮5\)
mà n không chia hết cho 5 => có dạng n = 5k + 1 ;5k + 2 ; 5k + 3 ;5k + 4 (k \(\in Z\))
Khi n = 5k + 1 => n - 1 \(⋮5\Rightarrow Q⋮5\Rightarrow P⋮5\)
tương tự với n = 5k + 2 ; n = 5k + 3 ; n = 5k + 4 thì Q \(⋮5\Rightarrow P⋮5\)
b.
Điều duy nhất cần chú ý trong bài toán này: \(n^4\equiv1\left(mod5\right)\) với mọi số nguyên n ko chia hết cho 5
Do đó:
- Nếu cả 5 số a;b;c;d;e đều ko chia hết cho 5 thì vế trái chia hết cho 5, vế phải ko chia hết cho 5 (ktm)
- Nếu cả 5 số a;b;c;d;e đều chia hết cho 5 thì do chúng là số nguyên tố
\(\Rightarrow a=b=c=d=e=5\)
Thay vào thỏa mãn
- Nếu có k số (với \(1\le k\le4\)) trong các số a;b;c;d;e chia hết cho 5, thì vế phải chia hết cho 5, vế phải chia 5 dư \(5-k\ne\left\{0;5\right\}\) nên ko chia hết cho 5 \(\Rightarrow\) ktm
Vậy \(\left(a;b;c;d;e\right)=\left(5;5;5;5;5\right)\) là bộ nghiệm nguyên tố duy nhất
1. Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì \(\left(p-1\right)\left(p+1\right)⋮24\)
2. Tìm số nguyên n sao cho : \(n^2-2\)chia hết cho n+3
3 . Tìm số tự nhiên n ( n > 0 ) sao cho tổng :
1! +2!+3! + ... +n! là một số chính phương
1.Tìm x,y ∈ Z
\(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
2.Tìm p nguyên tố để
\(2^p+3^p=x^2\)(x∈\(Z^+\))
3.CMR:
a) ∀n∈N thì \(A=n^3-n+7\) không chia hết cho 6
b) ∀n∈N; n lẻ thì \(B=n^3-n\text{⋮}24\)
c) \(C=n^4+6n^3+11n^2+6n\text{⋮}24\) (n∈\(N^{\cdot}\))
1. Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học trực tuyến OLM
3.
\(a,A=n^3-n+7=n\left(n-1\right)\left(n+1\right)+7\)
Có \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số tự nhiên lt với \(n\in N\) nên chia hết cho 6
Mà 7 ko chia hết cho 6 nên A không chia hết cho 6
\(b,B=n^3-n=n\left(n-1\right)\left(n+1\right)\)
Như câu a thì B chia hết cho 6 hay B chia hết cho 3
Ta thấy n lẻ nên \(n=2k+1\left(k\in N\right)\)
\(\Rightarrow B=n^3-n=\left(n-1\right)n\left(n+1\right)\\ =\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)\\ =2k\left(2k+1\right)\left(2k+2\right)\\ =4k\left(k+1\right)\left(2k+1\right)\)
Mà k+1 và 2k+1 là 2 số tự nhiên lt nên chia hết cho 2
\(\Rightarrow B⋮4\cdot2\left(2k+1\right)=8\left(2k+1\right)⋮8\)
Vì B chia hết cho cả 3;8 và \(\left(3;8\right)=1\) nên B chia hết 24
\(c,C=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Ta thấy đây là 4 số tự nhiên lt với \(n\in N\) nên chia hết cho 24
Bài 13*: Một nhà máy có khoảng 1700 đến 2000 công nhân. Biết rằng khi xếp hàng 18 thì dư 8 người, xếp hàng 20 thì dư 10 người, xếp hàng 25 thì dư 15 người. Tính số công nhân của nhà máy.
Bài 14*: Một đơn vị bộ đội khi xếp hàng 20 thì thiếu 5 người, xếp hàng 25 thì thiếu 20 người, xếp hàng 30 thì thiếu 15 người; nhưng xếp hàng 41 thì vừa đủ. Tính số người của đơn vị đó biết đơn vị này có không quá 1000 người.
Bài 15: Tìm các cặp số tự nhiên x,y, biết:
3) * \(2y\times\left(x+1\right)-x-7=0\) 4) * \(xy-2x+y=15\)
Bài 16*: Tìm các số tự nhiên a,b (a<b), biết:
1) a + b = 336 và ƯCLN(a,b) = 24. 2) ƯCLN(a,b) = 6 và BCNN(a,b) = 36. 3) BCNN(a,b) = 150 và a.b = 3750.
4) a.b = 180 và BCNN(a,b)=20.ƯCLN(a,b). 5) a + b = 40 và BCNN(a,b) = 7.ƯCLN(a,b). 6) ƯCLN(a,b) + BCNN(a,b) = 21.
Bài 17*: So sánh các lũy thừa sau: a) 828 và 1521. b) 591 và 1159. c) 3319 và 1523.
Bài 18*: Chứng minh rằng:
1) Hai số tự nhiên liên tiếp thì nguyên tố cùng nhau.
2) \(\left(5n+1\right)\) và \(\left(6n+1\right)\) là hai số nguyên tố cùng nhau \(\left(n\in N\right)\)
3) BCNN\(\left(6n+1;n\right)=\left(6n2+n\right)\) với \(\left(n\in N\right)\)
4) \(S=31+32+33+...+3100⋮120\)
5) \(S=102015+8⋮18\)
6) Nếu \(\left(7a+2b;31a=9b\right)⋮2015\Rightarrow a,b⋮2015\left(a,b\in N\right)\)
7) Nếu p và p + 4 là hai số nguyên tố (p>3) thì p + 8 sẽ phải là hợp số.
8) Nếu a và b là hai số nguyên tố cùng nhau thì hai số \(13a+4b\)và\(15a+7b\)hoặc cũng nguyên tố cùng nhau hoặc \(⋮31\)
Bài 19*:
1) Tìm ƯCLN\(\left(2n+1;9n+5\right)\)với\(n\in N\)
2) Tìm số nguyên tố p sao cho: \(p+4;p+10;p+14\)đều là số nguyên tố.
3) Tìm ba số lẻ liên tiếp đều là số nguyên tố.
4) Tìm số tự nhiên a nhỏ nhất thỏa mãn:\(a\div4\left(dư3\right),a\div17\left(dư9\right),a\div19\left(dư13\right)\)
5) Hãy tính tổng các ước số của \(A=217\times5\)
6) \(S=1+5+52+53+...+520\)Tìm số tự nhiên n thỏa mãn: \(4S=5n\)
7) Tìm số tự nhiên n, biết \(p=\left(n-2\right)\times\left(n2+n-5\right)\)là số nguyên tố.
8) Tìm số tự nhiên n, biết \(1+3+5+..+\left(2n=1\right)=169\)
9) Tìm số nguyên tố bé nhất trong ba số nguyên tố có tổng bằng 132.
10) Tìm hai số tự nhiên nhỏ nhất có đúng 18 ước số.
11) Tìm ba số tự nhiên liên tiếp có tích bằng 2184.
Bài 20*:
a) Cho p và 2p + 1 là hai số nguyên tố (p>3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
b) Một số chia cho 21 dư 2 và chia 12 dư 5. Hỏi số đó chia cho 84 thì dư bao nhiêu?
Nhớ nhanh lên nhé, đây là các bài trong đề cương của mình, tuần sau mình phải thi học kì 1 rồi!!! Nhanh lên!!! Mình chờ đấy!!!
mình làm ơn đấy, trả lời giúp mình đi!!!!!!
help me please, I will repay you!!!!!!
you just help me, I will repay you everywhere!!!!!!