Cho x/3 = y/4=z/5. Chứng minh rằng : 4x-3y/2016 = 5y- 4z/2017 = 3z-5x/2018
Cho \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) chứng minh rằng \(\frac{4x-3y}{2016}=\frac{5y-4z}{2017}=\frac{3z-5x}{2018}\)
Đặt x/3=y/4=z/5=k
Cho \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)chứng minh rằng \(\frac{4x-3y}{2016}=\frac{5y-4z}{2017}=\frac{3z-5x}{2018}\)
Lời giải:
Vì $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$
$\Rightarrow$ \(\left\{\begin{matrix} 4x=3y\\ 5y=4z\\ 3z=5x\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4x-3y=0\\ 5y-4z=0\\ 3z-5x=0\end{matrix}\right.\)
\(\Rightarrow \frac{4x-3y}{2016}=0; \frac{5y-4z}{2017}=0; \frac{3z-5x}{2018}=0\)
\(\Rightarrow \frac{4x-3y}{2016}=\frac{5y-4z}{2017}=\frac{3z-5x}{2018}\)
Ta có đpcm.
a,Tính nhanh:
A=1,(11)+2,(22)+3,(33)+...+8,(88)
b,Cho:\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) CMR:\(\frac{4x-3y}{2016}=\frac{5y-4z}{2017}\frac{3z-5x}{2018}\)
Cho 4x - 3y/5 = 5y - 4z/3 = 3z - 5x/4 và x - y + 2 z = 2025 tìm x, y, z
Cho \(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\) và x - y + z = 200. Tìm x, y, z
\(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}\\\dfrac{4x-3y}{5}=\dfrac{3z-5x}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\left(4x-3y\right)=5\left(5y-4z\right)\\4\left(4x-3y\right)=5\left(3z-5x\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-9y-25y+20z=0\\16x-12y-15z+25x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\end{matrix}\right.\)
mà x-y+z=200 nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}36x-102y+60z=0\\164x-48y-60z=0\\60x-60y+60z=12000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}200x-150y=0\\-24x-42y=-12000\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x-3y=0\\4x+7y=2000\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-10y=-2000\\4x-3y=0\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\4x=3y\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=200\\x=\dfrac{3}{4}y=150\\150-200+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\x=150\\z=250\end{matrix}\right.\)
Rút gọn: M = \(\frac{5x^5+4x^4+3x^3+2}{4x^4+3x^3+2x^2+z}+\frac{4y^4+3y^3+2y^2+y}{5y^5+4y^4+3y^3+2}+\frac{5y^5+4z^4+3z^3+2}{4z^4+3z^3+2z^2+z}\)
Cho:
\(\frac{4x-3y}{5}=\frac{5y-4z}{3}=\frac{3z-5x}{4}\) và x-y+z=2020. Tìm x, y, z
Từ dãy tỉ số bằng nhau bài cho ta có
\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}=\frac{20x-15y+15y-12z+12z-20x}{25+9+16}=0\)
\(\Rightarrow4x-3y=5y-4z=3z-5x=0\)
....
Từ \(\frac{4x-3y}{5}\)=\(\frac{5y-4z}{3}\)=\(\frac{3z-5x}{4}\)⇒\(\frac{20x-15y}{25}\)=\(\frac{15y-12z}{9}\)=\(\frac{12z-20x}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{20x-5y}{25}\)=\(\frac{15y-12z}{9}\)\(\frac{12z-20x}{16}\)=\(\frac{20x-5y+15y-12z+12z-20x}{25+9+16}\)=\(\frac{0}{50}\)=0
+)4x-3y=0⇒4x=3y⇒\(\frac{x}{3}\)=\(\frac{y}{4}\)
+)5y-4z=0⇒5y=4z⇒\(\frac{y}{4}\)=\(\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)=\(\frac{x-y+z}{3-4+5}=\frac{2020}{4}=505\)
+)\(\frac{x}{3}=505\)⇒x=1515
+)\(\frac{y}{4}=505\)⇒y=2020
+)\(\frac{z}{5}=505\)⇒z=2525
Vậy....
1. Cho \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\) và x + y + z = 48. Tìm x;y;z
2. Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\). Chứng minh rằng \(\frac{5x-2y}{2018}=\frac{6y-5z}{2019}=\frac{4z-12y}{2020}\)
1.
Có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\\ \Leftrightarrow\frac{7}{7}.\left(\frac{4x-5y}{7}\right)=\frac{9}{9}.\left(\frac{5z-3x}{9}\right)=\frac{11}{11}.\left(\frac{3y-4z}{11}\right)\\ \Leftrightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}\)
tính ra nó đc x+ 2y +z ko đc tròn cho lắm..... mệt r tự nghĩ tiếp đi
1.
Ta có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}.\)
\(\Rightarrow\frac{7.\left(4x-5y\right)}{49}=\frac{9.\left(5z-3x\right)}{81}=\frac{11.\left(3y-4z\right)}{121}\)
\(\Rightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}=\frac{\left(28x-27x\right)-\left(35y-33y\right)+\left(45z-44z\right)}{251}=\frac{x-2y+z}{251}.\)
Đoạn này chịu rồi.
Cho 4x-5y/3=5z-3x/4=3y-4z/5 chứng minh x/5=y/4=z/3
Lời giải:
\(\frac{4x-5y}{3}=\frac{5z-3x}{4}=\frac{3y-4z}{5}\)
\(=\frac{3(4x-5y)}{9}=\frac{4(5z-3x)}{16}=\frac{5(3y-4z)}{25}\)
\(=\frac{12x-15y}{9}=\frac{20z-12x}{16}=\frac{15y-20z}{25}=\frac{12x-15y+20z-12x+15y-20z}{9+16+25}=0\)
\(\Rightarrow 4x-5y=5z-3x=3y-4z=0\)
\(\Rightarrow 4x=5y; 3y=4z\Rightarrow \frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)