Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương  Tiền  Phương
Xem chi tiết
Nguyễn Linh Chi
11 tháng 12 2019 lúc 12:53

ĐK : \(x\ge-2;y\ge-3\)

pt (1) <=> \(x^3+x=\left(y+1\right)^3+\left(y+1\right)\)

<=> \(\left(y+1\right)^3-x^3+\left(y+1\right)-x=0\)

<=> \(\left(y+1-x\right)\left(\left(y+1\right)^2+\left(y+1\right)x+x^2+1\right)=0\)

<=> \(y+1-x=0\) vì \(\left(y+1\right)^2+\left(y+1\right)x+x^2+1>0\)dễ chứng minh.

<=> \(x=y+1\)(1')

pt (2) <=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{y+3}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{y+3}-3\right|=1\)(2')

Thế (1') vào (2') ta có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)

Có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=\left|\sqrt{y+3}-2\right|+\left|3-\sqrt{y+3}\right|\ge1\)

Do đó: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)<=> \(\left(\sqrt{y+3}-2\right)\left(3-\sqrt{y+3}\right)\ge0\)

<=> \(2\le\sqrt{y+3}\le3\)

<=> \(4\le y+3\le9\)

<=> \(1\le y\le6\)(tm) 

Khi đó: x = y + 1 với mọi y thỏa mãn \(1\le y\le6\)

Vậy tập nghiệm  \(S=\left\{\left(y+1;y\right):1\le y\le6\right\}\)

Khách vãng lai đã xóa
vu thi thuy duong
Xem chi tiết
Ngô Chi Lan
26 tháng 8 2020 lúc 22:07

Bài làm:

Ta có: \(\sqrt{x}+2>3\)

\(\Leftrightarrow\sqrt{x}>1\)

\(\Rightarrow x>1\)

Khách vãng lai đã xóa
Capheny Bản Quyền
26 tháng 8 2020 lúc 22:20

\(\sqrt{x}>1\) 

\(\orbr{\begin{cases}1>0\left(llđ\right)\\x>1^2\end{cases}}\) 

\(x>1\)

Khách vãng lai đã xóa
Quang huy Vu tien
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 23:27

Sửa đề: +6x^2

x^4+4x^3+6x^2-x-10=0

=>x^4-x^3+5x^3-5x^2+11x^2-11x+10x-10=0

=>(x-1)(x^3+5x^2+11x+10)=0

=>(x-1)(x^3+2x^2+3x^2+6x+5x+10)=0

=>(x-1)(x+2)(x^2+3x+5)=0

=>x=1 hoặc x=-2

Nii-chan
Xem chi tiết
Hà Tô Việt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2022 lúc 15:30

Đặt căn x=a

=>\(\sqrt{3+2a}+a=6\)

\(\Leftrightarrow\sqrt{2a+3}=6-a\)

\(\Leftrightarrow\left\{{}\begin{matrix}a< =6\\a^2-12a+36=2a+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a< =6\\a^2-14a+33=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a< =6\\\left(a-3\right)\left(a-11\right)=0\end{matrix}\right.\Leftrightarrow a=3\)

=>x=9

tiểu thư họ nguyễn
Xem chi tiết
Minh Hiền
13 tháng 2 2016 lúc 14:28

x.(3x - 1) - (3x + 2) . (x - 5) = 0

<=> 3x2 - x - 3x2 + 15x - 2x + 10 = 0

<=> 12x + 10 = 0

<=> 12x = -10

<=> x = -5/6

Vậy S = {-5/6}

vinhcuu84
Xem chi tiết
alibaba nguyễn
19 tháng 9 2016 lúc 19:00

Ta có PT <=> x+ 5x3 - 15x + 9 = 0

<=> (x - 1)(x + 3)(x2 + 3x - 3) = 0

Tới đây thì đơn giản rồi

lê thanh tùng
Xem chi tiết
Thắng Nguyễn
30 tháng 3 2016 lúc 21:13

x=-2 hoặc 1

Ngô Ngọc Tâm Anh
Xem chi tiết
missing you =
16 tháng 2 2022 lúc 20:14

\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)

\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)

\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)

\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)

\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Đỗ Tuệ Lâm
16 tháng 2 2022 lúc 20:08

3.15:

a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)

 

b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

 

3.16

\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)

\(\Leftrightarrow-14m+35-2m^2+8=0\)

\(\Leftrightarrow-14m-2m^2+43=0\)

\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)

\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)

\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)

\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)

pt vô nghiệm

karipham
Xem chi tiết