Tìm x , y , z biết :
\(\dfrac{-7x+1}{5}=\dfrac{8y-2}{7}=\dfrac{11-7x+8y}{-6}\)
Bài 1: Tìm x, y biết :
\(a,\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}vàx+y+z=138\)
\(b,7x=5yvàxy=140\)
\(c,3x=8y=6zvà2x+3y-z=210\)
\(d,\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}và2x+3y-z=50\)
\(a,\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{x}{7}\) và \(x+y+z=138\)
\(\dfrac{x}{5}=\dfrac{y}{6}\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{24}\) \(\left(1\right)\)
\(\dfrac{y}{8}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{24}=\dfrac{z}{21}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y+z}{20+24+21}=\dfrac{138}{65}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{20}=\dfrac{138}{65}\\\dfrac{y}{24}=\dfrac{138}{65}\\\dfrac{z}{21}=\dfrac{138}{65}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{553}{13}\\y=\dfrac{3312}{65}\\z=\dfrac{2898}{65}\end{matrix}\right.\)
Vậy.......
Mọi người giúp em với ạ
tìm các số x,y,z biết:
a) \(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3}v\text{à}x-y+z=-15\)
b) \(\dfrac{x}{y}=\dfrac{7}{20};\dfrac{y}{z}=\dfrac{5}{8}v\text{à}2x+5y-2z=100\)
c)\(5x=8y=20zv\text{à}x-y-z=3\)
d)\(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}zv\text{à}-x+y+z=-120\)
a) \(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
⇒\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c: Ta có: 5x=8y=20z
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)
Do đó: x=24; y=15; z=6
Tìm các số x,y,z biết:
a)\(\dfrac{x}{y}=\dfrac{7}{20};\dfrac{y}{z}=\dfrac{5}{8}\)và 2x+5y-2x=100
b)5x=8y=20z và x-y-z=3
c)\(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\)và -x+y+z=-120
a) Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\)
\(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\)
\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
\(\Rightarrow\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
Áp dụng tc dãy tỉ số bằng nhau:
\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=2\)
Do \(\left\{{}\begin{matrix}\dfrac{2x}{14}=2\\\dfrac{5y}{100}=2\\\dfrac{2z}{64}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\).
b) \(5x=8y=20z\Rightarrow\dfrac{5x}{40}=\dfrac{8y}{40}=\dfrac{20z}{40}\)
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}\)
Áp dụng...
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
....
c) \(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\Rightarrow\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)
...
1) 11x=8y và y-x= -42
2) \(\dfrac{x}{y}\) =\(\dfrac{9}{7}\)=\(\dfrac{y}{z}\) =\(\dfrac{7}{3}\) và x-y+z=- 15
3) \(\dfrac{x}{-7}\) = \(\dfrac{y}{4}\) và 2x-3y= -78
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{11}=\dfrac{y-x}{11-8}=\dfrac{-42}{3}=-14\)
Do đó: x=-112;y=-154
bài 1 tìm các số x,y,z
a,5x=8y=20z và x-y-z=3
b,\(\dfrac{6}{11}\)x=\(\dfrac{9}{2}y=\dfrac{18}{5}z\)và -x+y+z=-120
\(5x=8y=20z\)
\(\Leftrightarrow\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)
dựa vào t/c của dãy tỉ số = nhau ta có:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\Leftrightarrow=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}\)
Mà x-y-z=3
\(\Leftrightarrow\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)
\(x=120.\dfrac{1}{5}=24\)
\(y=120.\dfrac{1}{8}=15\)
\(z=120.\dfrac{1}{20}=6\)
Vây...
\(\dfrac{x}{5}=\dfrac{y}{-4}=\dfrac{z}{6}vàxyz=15\)
\(5x=8y=3zvàx-2y+z=34\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{3}}=\dfrac{x-2y+z}{\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{3}}=\dfrac{34}{\dfrac{17}{60}}=120\)
Do đó: x=24; y=15; z=40
tìm x;y
\(\dfrac{x-1}{6}=\dfrac{3-2y}{30}\)
và biết 3x+8y=2
Ta có: \(\dfrac{x-1}{6}=\dfrac{-2y+3}{30}\)
\(\Leftrightarrow\dfrac{3x-3}{18}=\dfrac{-8y+12}{120}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x-3}{18}=\dfrac{-8y+12}{120}=\dfrac{3x-3+8y-12}{18-120}=\dfrac{2-15}{-102}=\dfrac{13}{102}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x-1}{6}=\dfrac{13}{102}\\\dfrac{3-2y}{30}=\dfrac{13}{102}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=\dfrac{13}{17}\\-2y+3=\dfrac{65}{17}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{30}{17}\\-2y=\dfrac{14}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{30}{17}\\y=\dfrac{-7}{17}\end{matrix}\right.\)
Ta có: 5x - 5 = 3 - 2y
=> 5x+2y = 8
=> 20x + 8y = 32
Mà 3x +8y = 2
=> 17x = 30
=> x = \(\dfrac{30}{7}\)
=> y = ... giải tiếp nha bạn.
Xin 1 like nha bạn. Thx bạn
Tìm các số nguyên x,y biết:
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
b) \(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
d) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
f) \(y\dfrac{5}{y}=\dfrac{86}{y}\) ( \(x\dfrac{2}{5};y\dfrac{5}{y}\) là các hỗn số)
a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
⇒\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)
⇒\(2x+1=21\)
\(2x=21-1\)
\(2x=20\)
⇒\(x=10\)
1)tìm x,y,Z,biết:
a)7x=4y và y-x=24
b)\(\dfrac{x}{5}=\dfrac{y}{6},\dfrac{y}{8}=\dfrac{Z}{7}\)và x+y-z=69
c)\(\dfrac{x}{y}=\dfrac{2}{5}vàx-y=40\)
giúp mình nhé !
a ) \(7x=4y\) hay \(\dfrac{x}{4}=\dfrac{y}{7}\) và \(y-z=24\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{y-z}{7-4}=\dfrac{24}{3}=8\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=32\\y=56\end{matrix}\right.\)
Vậy ............
b ) \(\dfrac{x}{5}=\dfrac{y}{6},\dfrac{y}{8}=\dfrac{z}{7}\)
hay : \(\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}\) và \(x+y-z=69\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)
Vậy .......
c.
\(\dfrac{x}{y}=\dfrac{2}{5}=\dfrac{x}{2}=\dfrac{y}{5}\)và x - y = 40
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x-y}{2-5}=\dfrac{40}{-3}\)
\(\dfrac{x}{2}=\dfrac{40}{-3}\Rightarrow x=\dfrac{40.2}{-3}=-\dfrac{80}{3}\)
\(\dfrac{y}{5}=\dfrac{40}{-3}\Rightarrow y=\dfrac{40.5}{-3}=-\dfrac{200}{3}\)
Vậy x = \(-\dfrac{80}{3}\), y = \(-\dfrac{200}{3}\)
Tương tự tiếp nghen