Giải phương trình sau:
(x+1)(x+2)(x+3)(x+6)=8x2
Giải phương trình sau:
b)2( x +1) = 5x - 7
c) 3 - 4x(25 - 2x) = 8x2 + x - 300
d) \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
`b,2(x+1)=5x-7`
`=>2x+2=5x-7`
`=>3x=9`
`=>x=3`
`c,3-4x(25-2x)=8x^2+x-300`
`<=>3-100x+8x^2=8x^2+x-300`
`<=>101x=303`
`<=>x=3`
`d,(10x+3)/12=1+(6+8x)/9`
`<=>(10x+3)/12=(8x+15)/9`
`<=>30x+9=32x+60`
`<=>2x=-51`
`<=>x=-51/2`
Giải các phương trình sau
a) 8(x-3)(x+1)=8x2+11
b) \(\dfrac{x+2}{x-2}\)-\(\dfrac{2}{x^2-2x}\)= \(\dfrac{1}{x}\)
`8(x-3)(x+1)=8x^2 +11`
`<=>8(x^2 +x-3x-3)-8x^2 -11=0`
`<=>8x^2 +8x-24x-24-8x^2 -11=0`
`<=>-16x-35=0`
`<=>-16x=35`
`<=>x=-35/16`
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(x\ne0;x\ne2\right)\\ < =>\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
suy ra
`x^2 +2x-2=x-2`
`<=>x^2 +2x-x-2+2=0`
`<=>x^2 +x=0`
`<=>x(x+1)=0`
\(< =>\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ < =>x=-1\)
\(a,8\left(x-3\right)\left(x+1\right)=8x^2+11\\ \Leftrightarrow\left(8x-24\right)\left(x+1\right)=8x^2+11\\ \Leftrightarrow8x^2-24x+8x-24-8x^2-11=0\\ \Leftrightarrow-16x-35=0\\ \Leftrightarrow x=\dfrac{-35}{16}\)
Vậy \(x=-\dfrac{35}{16}\)
\(b,đkxđ:x\ne2;x\ne0\)
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}-\dfrac{1}{x}=0\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=0\\ \Leftrightarrow x^2+2x-2-x+2=0\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)
Vậy \(x=-1\)
@ducminh
Bài 1. Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:
1. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)
c) 7 – (2x + 4) = – (x + 4) d) (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3
e) (x + 1)(2x – 3) = (2x – 1)(x + 5) f) (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)
g) (x – 1) – (2x – 1) = 9 – x h) (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2
i) x(x + 3)2 – 3x = (x + 2)3 + 1 j) (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)
2. a) b)
c) d)
e) f)
g) h)
i) k)
m) n)
bạn đăng tách cho mn cùng giúp nhé
Bài 1 :
a, \(\Leftrightarrow11-x=12-8x\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
b, \(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\Leftrightarrow x=-2\)
c, \(\Leftrightarrow3-2x=-x-4\Leftrightarrow x=7\)
d, \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)
\(\Leftrightarrow3x^2+12x-9=3x^2+3x+1\Leftrightarrow x=\dfrac{10}{9}\)
e, \(\Leftrightarrow2x^2-x-3=2x^2+9x-5\Leftrightarrow x=5\)
f, \(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x-22\)
\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\Leftrightarrow3x=-21\Leftrightarrow x=-7\)
h) \(PT\Leftrightarrow x^2+4x-3x-12-6x+4=x^2-8x+16\)
\(\Leftrightarrow3x=24\)
\(\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
j) \(PT\Leftrightarrow x^3-x^2+x+x^2-x+1-2x=x^3-x\)
\(\Leftrightarrow x=1\)
Vậy: \(S=\left\{1\right\}\)
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
Bài 1:a) Chứng minh rằng không tồn tại các cặp số x,y thỏa mãn:
8x2+26xy+29y2=10001
b) Giải phương trình nghiệm nguyên 2xy-2y+x^2-4x+2=0
c) Giải phương trình 4+2\(\sqrt{2-2x^2}\)=3\(\sqrt{x}+3\sqrt{2-x}\)
Giúp mình bài này ạ:
Bài 1:a) Chứng minh rằng không tồn tại các cặp số x,y thỏa mãn:
8x2+26xy+29y2=10001
b) Giải phương trình nghiệm nguyên 2xy-2y+x^2-4x+2=0
c) Giải phương trình 4+2√2−2x22−2x2=3√x+3√2−x
Số nghiệm của phương trình 2 x 2 + 2 x - 9 = ( x 2 - x - 3 ) . 8 x 2 + 3 x - 6 + ( x 2 + 3 x - 6 ) . 8 x 2 - x - 3 là:
A. 1
B. 3
C. 2
D. 4
Câu 1: Giải các phương trình sau:
a) 3- 4x (25 - 2x ) = 8x2 + x - 300
b)
c)
Giải phương trình: 3 – 4x(25 – 2x) = 8x2 + x – 300
3 – 4x(25 – 2x) = 8x2 + x – 300
⇔ 3 – 4x.25 + 4x.2x = 8x2 + x – 300
⇔ 3 – 100x + 8x2 = 8x2 + x – 300
⇔ -100x – x = -300 – 3
⇔ -101x = -303
⇔ x = 3.
Vậy phương trình có tập nghiệm S = {3}.
giải phương trình sau:
(x+1)^3-(x-1)^3=6(x^2+x+1)
\(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\\ \Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+6x+6\\ \Leftrightarrow6x^2+2-6x^2-6x-6=0\\ \Leftrightarrow-6x-4=0\\ \Leftrightarrow x=-\dfrac{2}{3}\)