Cho a,b thuộc N*. biết a> 2, b > 2
Chứng minh a+b > a×b
Cho biết
\(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\)=2
\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=2
Chứng minh a+b+c=abc
Ta có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=1a^2+1b^2+1c^2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(=2^2=2=2+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
\(=\dfrac{c}{abc}+\dfrac{a}{abc}+\dfrac{b}{abc}=\dfrac{abc}{abc}\)
\(=a+b+c\)
\(=abc\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\\ \Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\\ \Rightarrow\dfrac{a+b+c}{abc}=1\\ \Rightarrow a+b+c=abc\left(dpcm\right)\)
cho 4 số dương thoả mãn a,b,c,d,biết a/b =c/d.a^2=b^2+c^2
chứng minh 1/d^2=1/b^2+1/c^2
cho 2 số tự nhiên a và b > 2chứng minh rằng a.b>a+b
cho 4 số dương thoả mãn a,b,c,d:a/b =c/d.a^2=b^2+c^2
chứng minh 1/d^2=1/b^2+1/c^2
Cho a,b,c > 0 thỏa mãn Chứng minh abc8
cho a,b thuộc n* biết a>2,b>2
chứng minh :a+b<a*b
Cho a , b thuộc N* biết a > 2 , b > 2
Chứng minh rằng a + b < a . b
+ Nếu a < b thì a + b < b + b
=> a + b < 2.b < a.b (vì a > 2)
+ Nếu a = b thì a + b = b + b
=> a + b = 2.b < a.b (vì a > 2)
+ Nếu b > a thì a + b < b + b
=> a + b < 2.b < a.b (vì a > 2)
Vậy với a > 2; b > 2 thì a + b < a.b (đpcm)
Nếu muốn a.b < a + b thì a b nhân nhau phải có a hoặc b bằng 1:
a. 1 = a, b. 1 = b
Nhưng a > 2, b > 2.
Nên không có trường hợp 1 nêu trên xảy ra.
Vậy:
=> a + b < a.b nếu a > 2 ; b > 2
Vì a,b thuộc N sao và a,b>2
=>a có dạng 2+m và b có dạng 2+n
ta có 2+m+2+n
=>4+m+n
lại có:(2+m).(2+n)
=>(2+m).2+(2+m).n
=>4+m.2+2n+mn
=>4+2.(m+n)+mn
Vì 4=4 mà 2.(m+n).m+n
=>a+b<a.b
1. a, Cho biết 3a+2b chia hết cho 17 (a,b thuộc N). Chứng minh 10a+b chia hết co 17
b, Biết a-5b chia hết cho 17. Chứng minh 10a+b chia hết cho 17(a,b thuộc N)
a, Giả sử 10a + b \(⋮\) 17 (1)
Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17
=> 24a + 16b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17
=> 10a + b + 24a + 16b \(⋮\) 17
=> (10a + 24a) + (16b + b) \(⋮\) 17
=> 34a + 17b \(⋮\) 17
=> 17(2a + b) \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\)17 (đpcm)
b, Giả sử 10a + b \(⋮\) 17 (1)
Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17
=> 7a - 35b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17
=> 10a + b + 7a - 35b \(⋮\) 17
=> (10a + 7a) + (b - 35b) \(⋮\) 17
=> 17a + (-34b) \(⋮\) 17
=> 17.[a + (-2)b] \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\) 17 (đpcm)
Cho a,b thuộc N* biết : a >2 ; b > 2
chứng minh : a + b < a.b