Giả sử x,y là các số không âm thỏa mãn điều kiện x2+y2=1.
Tim GTNN,GTLN của x+y
Giả sử x và y là những số không âm thay đổi thỏa mãn điều kiện x2+y2=1
a, chứng minh rằng \(1\le x+y\le\sqrt{2}\)
b, Tìm GTLN và GTNN của \(P = {\sqrt{1+2x}+\sqrt{1+2y}}\)
Cho x, y là các số thực không âm và thỏa mãn điều kiện \(x^3+y^3+xy=x^2+y^2\). Tìm GTNN và GTLN của
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Cho các số thực x,y không âm thỏa mãn điều kiện .Hãy tìm giá trị lớn nhất của biểu thức .
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$
$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$
Giả sử x,y là những số không âm thỏa mãn điều kiện x2 + y2 = 1
Tìm giá trị nhỏ nhất của x + y
Cho các số thực x, y không âm và thỏa mãn điều kiện: x 2 + y 2 ≤ 2 . Hãy tìm giá trị lớn nhất của biểu thức:
P = x 29 x + 3 y + y 29 y + 3 x
Áp dụng bất đẳng thức Cosi ta có:
1 32 32 x 29 x + 3 y ≤ 1 4 2 32 x + 29 x + 3 y 2 = 1 8 2 61 x + 3 y
Tương tự
1 32 32 y 29 y + 3 x ≤ 1 8 2 61 y + 3 x
=> P ≤ 4 2 x + y ≤ 4 2 x 2 + 1 2 + y 2 + 1 2 = 8 2
Vậy P min = 8 2 <=> x = y = 1
Cho các số thực x,y,z không âm thỏa mãn x + y + z = 2. GTLN và GTNN của biểu thức P = 2 1 + x + 1 + y 2 + 1 + z 2 lần lượt là M và m. Giá trị M + m nằm trong khoảng nào dưới đây?
A. (5;6)
B. (6;7)
C. (7;8)
D. (8;9)
Giả sử x,y là những số không âm thỏa mãn điều kiện x2 + y2 = 1
Tìm giá trị nhỏ nhất, giá trị lớn nhất của x + y
ta có (x+y)2\(\le\)2(x2+y2)=2
=> x+y \(\le\)\(\sqrt{2}\)(vì x+y\(\ge\)0)
Dấu bằng xảy ra khi x=y=\(\frac{\sqrt{2}}{2}\)
Bất đẳng thức Cô-si có \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\):
\(x^2+y^2\ge2xy\Rightarrow2\ge x^2+y^2+2xy\Rightarrow x+y\le\sqrt{2}\)
Vậy : \(GTLN=\sqrt{2}\)
\(x^2+y^2=1\Rightarrow x^2+y^2+2xy=1+2xy\Rightarrow2xy=0\)
\(\Rightarrow\left(x+y\right)^2=1\Rightarrow x+y=1\)
Vậy : \(GTNN=1\)( VÌ GTNN của nó khi nó có đáp án thực sự )
Cho x, y, z là các số thực thoả mãn điều kiện \(\dfrac{3x^2}{2}\)+ y2 + z2 +yz = 1. Tìm GTNN và GTLN của biểu thức A = x + y + z
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\)
\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)
Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)
\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)
minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)
maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y