Chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) với mọi a, b.
Chứng minh rằng:\(\left|a\right|-\left|b\right|\le\left|a+b\right|\) với mọi a,b thuộc R
=> |a| - |b| \(\le\) |a + b|
Nếu |a| > |b|- Nếu b = 0 thì |a| - |b| = |a| = |a + b|
Bây giờ chỉ còn lại 2 trường hợp với b khác 0
- Nếu a và b cùng dấu, dễ thấy: |a| - |b| < |a| < |a + b| => |a| - |b| < |a + b|
- Nếu a và b trái dấu
+ Nếu a > 0 > b, lại có: |a| > |b| (1)
=> |a| - |b| = a - (-b) = a + b
Từ (1) => bểu thức a + b mang dấu dương, do đó |a + b| = a + b = |a| - |b|
+ Nếu b > 0 > a, lại có: |a| > |b| (2)
=> |a| - |b| = -a - b = -(a + b)
Từ (2) => biểu thức a + b mang dấu âm, do đó |a + b| = -(a + b) = |a| - |b|
Như vậy, |a| - |b|\(\le\) |a + b|
Dấu "=" xảy ra khi b = 0 hoặc a và b cùng bằng 0 hoặc a và b trái dấu ( với b khác 0)
Chứng minh rằng
\(\left|a+b\right|\le\sqrt{2\left(a^2+b^2\right)}\) với mọi a, b
\(\left|a+b\right|\le\sqrt{2\left(a^2+b^2\right)}\)
Có \(a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Khai căn 2 vế
\(\sqrt{2\left(a^2+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=\left|a+b\right|\)
\(\text{Chứng minh rằng: Với mọi a,b thuộc R ta có : }\left|a\right|-\left|b\right|\le\left|a+b\right|\)
Làm lại:
Ta có: |a| - |b| \(\le\)|a+b| (1)
Xét |a| - |b|\(\le\)0 => (1) đúng (*)
Xét |a| - |b| > 0 ta bình phương 2 vế của (1) được
a2 - 2|a.b| + b2 \(\le\)a2 + 2ab + b2
<=> 2ab + 2|ab| \(\ge\)0 (2)
Xét ab < 0 thì
(2) <=> 2ab - 2ab = 0
=> (1) đúng (**)
Xét ab \(\ge\)0 thì
(2) <=> 2ab + 2ab \(\ge\)0
<=> 4ab \(\ge\)0 (đúng) (***)
Từ (*), (**), (***) suy ra (1) đúng với mọi a,b thuộc R
Vậy nếu bạn khinh thường nó bạn có thể giải
chứng minh rằng \(\left|a+b+c\right|\) ≤ \(\left|a\right|\) + \(\left|b\right|\) + \(\left|c\right|\) với mọi a,b,c thuộc R
Không dùng phép biến đổi tương đương, hãy chứng minh: \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) với mọi giá trị thực của a, b.
\(0< =2\left|a\right|\cdot\left|b\right|\)
\(\Leftrightarrow\left(\left|a\right|\right)^2+2\cdot\left|a\right|\cdot\left|b\right|+\left(\left|b\right|\right)^2>=\left(\left|a\right|\right)^2+\left|b\right|^2\)
\(\Leftrightarrow\left(\left|a+b\right|\right)^2< =\left(\left|a\right|+\left|b\right|\right)^2\)
=>|a+b|<=|a|+|b|
Chứng minh với mọi số thực dương
\(\left(\frac{a+b}{2}\right)^3+\left(\frac{b+c}{2}\right)^3+\left(\frac{c+a}{2}\right)^3\le a^3+b^3+c^3\)
\(a^3+b^3+c^3-\Sigma_{cyc}\left(\frac{a+b}{2}\right)^3=\frac{3}{8}\left[\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\right]\)
chứng minh bđt sau với a,b,c dương
\(\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{8}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có: \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2\left(b+c\right)+ab\left(b+c\right)+bc\left(b+c\right)+ac\left(b+c\right)+abc\)
\(=\left(b+c\right)\left(a^2+ab+bc+ac\right)+abc\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
Vậy BĐT cần chứng minh trở thành:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{8}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\frac{1}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le0\) \(?!\)
Bất đẳng thức sai
Thử lại với \(a=b=c=1\) thì \(9\le\frac{64}{9}\) sai thật
BĐT đúng có lẽ là:
\(\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó:
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (đúng theo AM-GM)
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c\)
Sửa đề: \(\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Với mọi a,b,c . CMR
\(-\dfrac{1}{2}\le\dfrac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\dfrac{1}{2}\)
Lời giải:
BĐT cần CM tương đương với:
\(\left[\frac{(a+b)(1-ab)}{(a^2+1)(b^2+1)}\right]^2\leq \frac{1}{4}\)
Đặt $a+b=x; ab=y$ thì BĐT \(\Leftrightarrow \left(\frac{x(1-y)}{y^2+x^2-2y+1}\right)^2=\left(\frac{x(y-1)}{x^2+(y-1)^2}\right)^2\leq \frac{1}{4}\)
Điều này luôn đúng vì theo BĐT AM-GM:
\([x^2+(y-1)^2]^2=x^4+(y-1)^4+2x^2(y-1)^2\geq 2x^2(y-1)^2+2x^2(y-1)^2=[2x(y-1)]^2\)
\(\Rightarrow \frac{[x(y-1)]^2}{[x^2+(y-1)^2]^2}\leq \frac{[x(y-1)]^2}{[2x(y-1)]^2}=\frac{1}{4}\)
Chứng minh rằng\(\left|a+b\right|\le\left|1+ab\right|\)với\( \left|a\right|,\left|b\right|\le1\)
Ta có:\(\left|a\right|,\left|b\right|\) \(\leq\) \(1\)
\(\implies\) \(\left(1-a\right).\left(1-b\right)\) \(\geq\) \(0\)
\(\implies\) \(1-b-a+ab\)\(\geq\) \(0\)
\(\implies\) \(1+ab\) \(\geq\) \(a+b\)
\(\implies\) \(\left|1+ab\right|\) \(\geq\) \(\left|a+b\right|\) \(\left(đpcm\right)\)
chỗ nào không hiểu hỏi tớ bài này hơi khó