a=1+5+52+54+56+...+5102
Cho A=52+54+56+...+5100+5102.Chứng minh A ⋮ 25
\(A=5^2+5^4+5^6+...+5^{100}+5^{102}\\ =5^2.\left(1+5^2+5^4+...+5^{98}+5^{100}\right)\\ =25.\left(1+5^2+5^4+...+5^{98}+5^{100}\right)⋮25\)
\(=\left(5^2.1+5^2.5^2+5^2.5^4+....+5^2.5^{98}+5^2.5^{102}\right)\\ =5^2.\left(1+5^2+5^4+....+5^{98}+5^{102}\right)\\ =25.\left(1+5^2+5^4+...+5^{98}+5^{102}\right)⋮25\\ =>A⋮25\)
(1+54+52+56).:626
657 + 56 - 54 + 54 - 52 + 52 - 50 + 50 - 48=
657 + 56 - 54 + 54 - 52 + 52 - 50 + 50 - 48=665
mọi người ủng hộ mik bằng cái
xin cảm ơn mọi người
chúc các bạn học tốt
550-548+546-544+...+56-54+52-1
A = 550 - 548 + 546- 544+....+56 - 54 + 52 - 1
A \(\times\) 22 = 552 - 550 + 548 - 546+ 544-.....-56 +54 - 52
A \(\times\) 4 + A = 552 - 1
5A = 552 - 1
A = ( 552 - 1) : 5
A = 551 - \(\dfrac{1}{5}\)
1+2+3+4+5+6+7+7+8+9+10+11+12+13+14+45+15+16+17+18+19+20+21-56+56+48+52+78+84+54+2545+455+1454+1256-23+56+586=
1+2+3+4+....-56+56+48.......-23+56+586=6928
cho S =5+52+53+54+55+56+...+52012
chứng tỏ S chia hết cho 65
S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰¹²
= (5 + 5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷ + 5⁸) + ... + (5²⁰⁰⁹ + 5²⁰¹⁰ + 5²⁰¹¹ + 5²⁰¹²)
= 780 + 5⁴.(5 + 5² + 5³ + 5⁴) + ... + 5²⁰⁰⁸.(5 + 5² + 5³ + 5⁴)
= 780 + 5⁴.780 + ... + 5²⁰⁰⁸.780
= 65.12 + 5⁴.65.12 + ... + 5²⁰⁰⁸.65.12
= 65.12(1 + 5⁴ + ... + 5²⁰⁰⁸) ⋮ 65
Vậy S ⋮ 65
\(S=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)+...+5^{2009}\left(1+5+5^2+5^3\right)\)
\(=156\left(5+5^5+...+5^{2009}\right)\)
\(=780\cdot\left(1+5^4+...+5^{2008}\right)⋮65\)
Thực hiện phép tính:
a) 5 3 : 5 2 + 2 2 . 3 ;
b) 4 3 . 125 - 125 : 5 2 ;
c) 6 2 . 28 + 72 . 6 2 ;
d) 5 6 : 5 4 + 3 . 3 2 - 8 0
cho S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52016. chứng tỏ rằng S chia hết cho 65
mn giúp mk nhé!!
\(S=5+5^2+5^3+5^4+...+5^{2016}\\ =\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)...+\left(5^{2013}+5^{2014}+5^{2015}+5^{2016}\right)\\ =\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2012}\left(5+5^2+5^3+5^4\right)\\ =780+5^4\cdot780+...+5^{2012}\cdot780\\ =780\cdot\left(5^4+...+5^{2012}\right)=65\cdot12\cdot\left(5^4+...+5^{2012}\right)⋮65\)vậy S chia hết cho 65
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
Tính nhanh: 51 - 52 + 53 - 54 + 55 - 56