Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang
Xem chi tiết
Yeutoanhoc
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 8 2021 lúc 16:54

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))

Trần Anh Tú
Xem chi tiết
Trịnh Quỳnh Nhi
27 tháng 11 2017 lúc 21:57

Ta có \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{\left(bc\right)^3+\left(ab\right)^3+\left(ac\right)^3}{\left(abc\right)^2}\)

Ta lại có (a+b+c)2=a2+b2+c2

=>a2+b2+c2+2(ab+bc+ac)= a2+b2+c2

=> 2(ab+bc+ac)=0=> ab+bc+ac=0

Ta cần chứng minh bài toán phụ x+y+z=0 thì

x3+y3+z3=3xyz

Ta thấy x+y+z=0=> x+y=-z

=> (x+y)3=-z3 => x3+3xy(x+y)+y3=-z3

=> x3+y3+z3=-3xy(x+y)=-3xy.(-z)=3xyz

Áp dụng vào bài toán ta có 

ab+bc+ac=0 => (ab)3+(bc)3+(ac)3=3(abc)2

=> \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)

=> đpcm

Trịnh Phương Khanh
Xem chi tiết
Hiiiii~
14 tháng 9 2017 lúc 21:23

Giải:

Biến đổi vế trái, ta được:

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(=\left(ab-a-b+1\right)\left(c-1\right)\)

\(=abc-ab-ac+a-bc+b+c-1\)

\(=abc-ab-ac-bc+a+b+c-1\)

\(=abc-\left(ab+ac+bc\right)+\left(a+b+c\right)-1\)

Thay ab + ac + bc = abc và a + b + c = 1, ta được:

\(=abc-abc+1-1\)

\(=0\)

\(\Rightarrowđpcm\).

Chúc bạn học tốt!

Kim Hoàng Oanh
Xem chi tiết
Lê Thanh Mai
Xem chi tiết
OoO Min min OoO
Xem chi tiết
luffyxxxchan
Xem chi tiết
Quang Tùng
Xem chi tiết
Quang Tùng
4 tháng 12 2016 lúc 21:09

CHo a => 4  b => 5  c => 6 và a2 + b+ c2 = 90

CMR a +b + c => 16

Nguyễn thị thanh hào
4 tháng 12 2016 lúc 21:30

 a^2+b^2+c^2=1 
=>-1=<a,b,c=<1 
=>(1+a)(1+b)(1+c)>=0 
=>1+abc+ab+bc+ca+a+b+c>=0 (1*) 
Lại có (a+b+c+1)^2/2>=0 
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca 
]/2>=0 
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1) 
=>1+a+b+c+ab+bc+ca>=0 (2*) 
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0 
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1 
<=>a=0,b=0,c=-1 va cac hoan vi cua no

trần xuân quyến
4 tháng 4 2017 lúc 20:44

như bài bạn nguyễn thị thanh thảo ế